首页> 外文期刊>Journal of Computational Neuroscience >Statistical structure of neural spiking under non-Poissonian or other non-white stimulation
【24h】

Statistical structure of neural spiking under non-Poissonian or other non-white stimulation

机译:非泊松或其他非白色刺激下神经突波的统计结构

获取原文
获取原文并翻译 | 示例
       

摘要

Nerve cells in the brain generate sequences of action potentials with a complex statistics. Theoretical attempts to understand this statistics were largely limited to the case of a temporally uncorrelated input (Poissonian shot noise) from the neurons in the surrounding network. However, the stimulation from thousands of other neurons has various sorts of temporal structure. Firstly, input spike trains are temporally correlated because their firing rates can carry complex signals and because of cell-intrinsic properties like neural refractoriness, bursting, or adaptation. Secondly, at the connections between neurons, the synapses, usage-dependent changes in the synaptic weight (short-term plasticity) further shape the correlation structure of the effective input to the cell. From the theoretical side, it is poorly understood how these correlated stimuli, so-called colored noise, affect the spike train statistics. In particular, no standard method exists to solve the associated first-passage-time problem for the interspike-interval statistics with an arbitrarily colored noise. Assuming that input fluctuations are weaker than the mean neuronal drive, we derive simple formulas for the essential interspike-interval statistics for a canonical model of a tonically firing neuron subjected to arbitrarily correlated input from the network. We verify our theory by numerical simulations for three paradigmatic situations that lead to input correlations: (i) rate-coded naturalistic stimuli in presynaptic spike trains; (ii) presynaptic refractoriness or bursting; (iii) synaptic short-term plasticity. In all cases, we find severe effects on interval statistics. Our results provide a framework for the interpretation of firing statistics measured in vivo in the brain.
机译:大脑中的神经细胞生成具有复杂统计数据的动作电位序列。理解该统计数据的理论尝试在很大程度上限于来自周围网络中神经元的时间不相关的输入(泊松噪声)的情况。然而,来自成千上万其他神经元的刺激具有各种时间结构。首先,输入峰值序列在时间上是相关的,因为它们的发射速率可以携带复杂的信号,并且由于细胞固有的特性(例如神经耐性,爆发或适应性)。其次,在神经元之间的连接处,突触,突触重量的使用依赖性变化(短期可塑性)进一步影响了细胞有效输入的相关结构。从理论的角度,人们对这些相关的刺激(所谓的有色噪声)如何影响尖峰信号的统计数据了解甚少。特别地,不存在解决带有任意彩色噪声的尖峰间隔统计的相关联的第一通过时间问题的标准方法。假设输入波动要比平均神经元驱动力弱,我们可以得出简单的基本尖峰间隔统计信息的简单公式,该模型是受网络任意关联输入的强音发射神经元经典模型的基本模型。我们通过对导致输入相关的三种范例情况的数值模拟来验证我们的理论:(i)突触前突波序列中的速率编码自然刺激; (ii)突触前难治或破裂; (iii)突触短期可塑性。在所有情况下,我们都发现间隔统计数据受到严重影响。我们的结果为解释在体内体内测量的放电统计数据提供了框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号