...
首页> 外文期刊>Journal of Computational Electronics >Multimillion-atom modeling of InAs/GaAs quantum dots: interplay of geometry, quantization, atomicity, strain, and linear and quadratic polarization fields
【24h】

Multimillion-atom modeling of InAs/GaAs quantum dots: interplay of geometry, quantization, atomicity, strain, and linear and quadratic polarization fields

机译:InAs / GaAs量子点的数百万原子建模:几何,量化,原子性,应变以及线性和二次极化场的相互作用

获取原文
获取原文并翻译 | 示例

摘要

Electronic structure and optical properties of self-assembled quantum dots strongly depend on an intricate interplay of the quantum mechanical size quantization and the atomistic built-in/internal electrostatic fields in the underlying material system. Specifically, built-in fields in zincblende quantum dots originate mainly from: (1) fundamental crystal atomicity and the interfaces between two dissimilar materials, (2) microscopic distribution of strain, and (3) the piezoelectric polarization. In this paper, we first study the origin and nature of these internal fields in InAs/GaAs quantum dots having three different geometries, namely, box, dome, and pyramid. We then quantify and delineate the impact of these internal fields on the one-particle electronic states in terms of symmetry-lowering and localization in the wavefunctions, shift in the energy states and bandgap, anisotropy and non-degeneracy in the level, and formation of mixed excited bound states near the Brillouin zone center. Finally, we study the geometry and size-dependence of interband optical transitions in the XY and XZ planes treating the quantum size quantization and the internal fields as parameters. The computational framework employs a combination of fully atomistic valence force-field molecular mechanics, 20-band nearest-neighbor tight-binding electronic bandstructure models, and appropriate post-processing tools to obtain the interband optical transition rates. In particular, to model piezoelectricity, four different polarization models (based on the experimental and ab initio coefficients accounting for both linear and non-linear effects) have been considered in increased order of accuracy. With the non-linear piezoelectricity generally opposing the linear counterpart, the net piezoelectric field is found to be negligible in smaller dots but exhibits non-vanishing effects as the dot height is increased.
机译:自组装量子点的电子结构和光学特性在很大程度上取决于量子力学尺寸量化与底层材料系统中内置的/内置的静电场之间的复杂相互作用。具体而言,闪锌矿量子点中的内置场主要源自:(1)基本晶体原子性和两种不同材料之间的界面,(2)应变的微观分布,以及(3)压电极化。在本文中,我们首先研究具有三个不同几何形状的InAs / GaAs量子点中这些内部场的起源和性质,即盒形,圆顶形和金字塔形。然后,我们根据波函数的对称性降低和局部化,能态和带隙的移动,能级的各向异性和非简并性以及能级的形成,来量化和描述这些内部场对单粒子电子态的影响。布里渊区中心附近的混合激发束缚态。最后,我们将量子尺寸量化和内部场作为参数,研究了XY和XZ平面中带间光学跃迁的几何形状和尺寸依赖性。该计算框架结合了完全原子价价场分子力学,20带最近邻紧密结合电子能带结构模型以及适当的后处理工具的组合,以获得带间光学跃迁速率。特别地,为了建模压电性,已经考虑了四种不同的极化模型(基于考虑线性和非线性影响的实验和从头算的系数)。在非线性压电性通常与线性对应性相反的情况下,发现净压电场在较小的点中可以忽略不计,但是随着点高度的增加,其显示出消失的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号