...
首页> 外文期刊>Journal of Cleaner Production >Carbonation curing for wollastonite-Portland cementitious materials: CO_2 sequestration potential and feasibility assessment
【24h】

Carbonation curing for wollastonite-Portland cementitious materials: CO_2 sequestration potential and feasibility assessment

机译:硅灰石-硅酸盐胶凝材料的碳化固化:CO_2螯合潜力和可行性评估

获取原文
获取原文并翻译 | 示例

摘要

Carbonation curing to produce building products could provide a promising route to energy-efficient cementation process and economic CO2 sequestration. The potential benefit from material selection and optimization should be explored to optimize the environmental performance of CO2-cured materials. In this study, the accelerated mineral carbonation of wollastonite-Portland cement (WPC), a low carbon binder, is investigated by combining a detailed study on its CO2 mineralization capacity and on the physicochemical evolution in microstructure. Up to 25 wt.% of natural wollastonite is employed to replace the CO2-intensive ordinary Portland cement. During the carbonation curing process, WPC pastes exhibited CO2 uptakes up to 20 wt.% under moderate pressures (2.5 MPa). Also, a dense structure with substantially high polymerization degree and fine pores was clearly discerned in cured WPC paste. The pore-creating effect from evaporated pore water and the porosity-filling effect from carbonated calcium silicates were found to dominate the microstructure in the early-stage and mid-late stage reactions, respectively. Results also revealed the positive impacts of adding the wollastonite mineral: (i) The diluted effect of wollastonite enhanced the pore-creating effect in the early-stage; (ii) The consumption of wollastonite and formation of Ca-modified silica gel primarily happened in the mid-late stage, which helped increasing the degree of polymerization. Associated with the structural evolution, the cured WPC pastes exhibited superior compressive strength (over 80 MPa) after the carbonation curing: the maximum increment could exceed 350%. These results demonstrate the feasibility of CO2 mineralization of WPC to produce green building material without compromising mechanical performance. (C) 2018 Published by Elsevier Ltd.
机译:碳化固化以生产建筑产品可以为节能水泥化工艺和经济的二氧化碳封存提供一条有希望的途径。应该探索材料选择和优化的潜在好处,以优化CO2固化材料的环境性能。在这项研究中,结合对二氧化碳的矿化能力和微观结构中的理化演变的详细研究,对低碳粘结剂硅灰石-波特兰水泥(WPC)的加速矿物碳化进行了研究。最多使用25 wt。%的天然硅灰石代替二氧化碳含量高的普通硅酸盐水泥。在碳化固化过程中,WPC浆料在中等压力(<2.5 MPa)下表现出高达20 wt。%的CO2吸收率。而且,在固化的WPC糊剂中清楚地看出具有明显高聚合度和细孔的致密结构。发现在早期和中后期反应中,蒸发的孔隙水产生的孔隙作用和碳酸钙硅酸盐的孔隙填充作用分别主导了微观结构。结果还显示了添加硅灰石矿物的积极影响:(i)硅灰石的稀释作用增强了早期的造孔作用; (ii)硅灰石的消耗和Ca改性硅胶的形成主要发生在中后期,这有助于提高聚合度。与结构演变相关的是,固化的WPC浆料在碳化固化后表现出优异的抗压强度(超过80 MPa):最大增量可能超过350%。这些结果证明了在不损害机械性能的情况下,木塑的CO2矿化生产绿色建筑材料的可行性。 (C)2018由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号