...
首页> 外文期刊>Journal of Biological Physics >Models of the Collective Behavior of Proteins in Cells: Tubulin, Actin and Motor Proteins
【24h】

Models of the Collective Behavior of Proteins in Cells: Tubulin, Actin and Motor Proteins

机译:细胞中蛋白质集体行为的模型:微管蛋白,肌动蛋白和运动蛋白

获取原文
获取原文并翻译 | 示例
           

摘要

One of the most important issues of molecular biophysics is the complex and multifunctional behavior of the cell's cytoskeleton. Interiors of living cells are structurally organized by the cytoskeleton networks of filamentous protein polymers: microtubules, actin and intermediate filaments with motor proteins providing force and directionality needed for transport processes. Microtubules (MT's) take active part in material transport within the cell, constitute the most rigid elements of the cell and hence found many uses in cell motility (e.g. flagella andcilia). At present there is, however, no quantitatively predictable explanation of how these important phenomena are orchestrated at a molecular level. Moreover, microtubules have been demonstrated to self-organize leading to pattern formation. We discuss here several models which attempt to shed light on the assembly of microtubules and their interactions with motor proteins. Subsequently, an overview of actin filaments and their properties isgiven with particular emphasis on actin assembly processes. The lengths of actin filaments have been reported that were formed by spontaneous polymerization of highly purified actin monomers after labeling with rhodamine-phalloidin. The length distributions are exponential with a mean of about 7 μm. This length is independent of the initial concentration of actin monomer, an observation inconsistent with a simple nucleation-elongation mechanism. However, with the addition of physically reasonable rates of filament annealing and fragmenting, a nucleation-elongation mechanism can reproduce the observed average length of filaments in two types of experiments: (1) filaments formed from a wide range of highly purified actin monomer concentrations, and (2) filaments formed from 24 mM actin over a range of CapZ concentrations. In the final part of the paper we briefly review the stochastic models used to describe the motion of motor proteins on protein filaments. The vast majority of these models are based on ratchet potentials with the presence of thermal noise and forcing due to ATP binding and a subsequent hydrolysis. Many outstanding questions remain to be quantitatively addressed on a molecular level in order to explain the structure-to-function relationship for the key elements of the cytoskeleton discussed in this review.
机译:分子生物物理学的最重要问题之一是细胞骨架的复杂和多功能行为。活细胞的内部结构是由丝状蛋白聚合物的细胞骨架网络组织的:微管,肌动蛋白和中间丝以及具有运动蛋白的中间蛋白,可提供运输过程所需的力和方向。微管(MT)活跃地参与了细胞内的物质运输,构成了细胞最坚硬的元素,因此在细胞运动性(例如鞭毛和纤毛)中发现了许多用途。但是,目前尚没有关于在分子水平上如何组织这些重要现象的定量可预测的解释。此外,微管已被证明是自组织的,导致​​形成图案。我们在这里讨论了几种模型,这些模型试图阐明微管的组装及其与运动蛋白的相互作用。随后,对肌动蛋白丝及其特性进行了概述,特别强调了肌动蛋白的组装过程。据报道肌动蛋白丝的长度是由若丹明-鬼笔环肽标记后通过高度聚合的肌动蛋白单体的自发聚合形成的。长度分布是指数分布,平均约为7μm。该长度与肌动蛋白单体的初始浓度无关,这一观察结果与简单的成核-延伸机理不一致。但是,通过增加物理上合理的长丝退火和断裂速率,成核-延伸机制可以在两种类型的实验中重现观察到的长丝平均长度:(1)由多种高度纯化的肌动蛋白单体浓度形成的长丝, (2)在CapZ浓度范围内由24 mM肌动蛋白形成的细丝。在本文的最后部分,我们简要回顾了用于描述运动蛋白在蛋白丝上运动的随机模型。这些模型中的绝大多数基于棘轮电势,其中存在热噪声,并且由于ATP结合和随后的水解而产生强迫作用。为了解释本文中讨论的细胞骨架关键元件的结构与功能的关系,许多悬而未决的问题仍需要在分子水平上进行定量解决。

著录项

  • 来源
    《Journal of Biological Physics》 |2003年第4期|401-428|共28页
  • 作者单位

    Department of Physics University of Alberta;

    Department of Physics University of Alberta;

    Department of Biomedical Engineering Center for Computational Biology Washington University;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号