...
首页> 外文期刊>Journal of Applied Physics >Plasma-driven solution electrolysis
【24h】

Plasma-driven solution electrolysis

机译:等离子体驱动的溶液电解

获取原文
获取原文并翻译 | 示例

摘要

Plasmas interacting with liquids enable the generation of a highly reactive interfacial liquid layer due to a variety of processes driven by plasma-produced electrons, ions, photons, and radicals. These processes show promise to enable selective, efficient, and green chemical transformations and new material synthesis approaches. While many differences are to be expected between conventional electrolysis and plasma-liquid interactions, plasma-liquid interactions can be viewed, to a first approximation, as replacing a metal electrode in an electrolytic cell with a gas phase plasma. For this reason, we refer to this method as plasma-driven solution electrochemistry (PDSE). In this Perspective, we address two fundamental questions that should be answered to enable researchers to make transformational advances in PDSE: How far from equilibrium can plasma-induced solution processes be driven? and What are the fundamental differences between PDSE and other more traditional electrochemical processes? Different aspects of both questions are discussed in five sub-questions for which we review the current state-of-the art and we provide a motivation and research vision.
机译:与液体相互作用的等离子体使得由于等离子体产生的电子,离子,光子和自由基驱动的各种方法,产生高反应性界面液体层。这些流程显示了能够实现选择性,高效和绿色化学转换和新材料合成方法。虽然在传统电解和血浆 - 液相之间需要预期许多差异,但是可以将血浆 - 液体相互作用观察到第一近似,因为用气相等离子体替换电解槽中的金属电极。因此,我们将该方法称为等离子体驱动的溶液电化学(PDSE)。在这个角度来看,我们解决了两个应该得到回答的基本问题,使研究人员能够在PDSE进行转型:均衡可以驱动等离子体诱导的解决方案过程的程度如何? PDSE和其他传统电化学过程之间的根本差异是什么?两个问题的不同方面是在五个子问题中讨论过,我们审查了当前的最先进,我们提供了动机和研究愿景。

著录项

  • 来源
    《Journal of Applied Physics 》 |2021年第20期| 200902.1-200902.19| 共19页
  • 作者单位

    Department of Mechanical Engineering University of Minnesota 111 Church Street SE Minneapolis Minnesota 55455 USA;

    Department of Chemistry University of Minnesota Minneapolis Minnesota 55455 USA;

    Department of Mechanical Engineering University of Minnesota 111 Church Street SE Minneapolis Minnesota 55455 USA;

    Department of Electrical Engineering and Computer Science University of Michigan 1301 Beal Ave. Ann Arbor Michigan 48109-2122 USA;

    Department of Chemical Engineering University of Michigan Ann Arbor Michigan 48109 USA;

    Department of Chemistry Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA;

    Department of Mechanical Engineering University of Minnesota 111 Church Street SE Minneapolis Minnesota 55455 USA;

    Department of Mechanical Engineering University of Minnesota 111 Church Street SE Minneapolis Minnesota 55455 USA;

    Department of Chemistry Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA;

    Department of Chemistry Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA;

    Department of Chemistry University of Minnesota Minneapolis Minnesota 55455 USA;

    Department of Mechanical Engineering University of Minnesota 111 Church Street SE Minneapolis Minnesota 55455 USA;

    Department of Mechanical Engineering University of Minnesota 111 Church Street SE Minneapolis Minnesota 55455 USA;

    Department of Chemical Engineering University of Michigan Ann Arbor Michigan 48109 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号