首页> 外文期刊>Journal of Applied Physics >Effect of AIN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy
【24h】

Effect of AIN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy

机译:AIN缓冲层性能对分子束外延生长的GaN纳米线的形态和极性的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Low-temperature AIN buffer layers grown via plasma-assisted molecular beam epitaxy on Si (111) were found to significantly affect the subsequent growth morphology of GaN nanowires. The AIN buffer layers exhibited nanowire-like columnar protrusions, with their size, shape, and tilt determined by the AIN Ⅴ/Ⅲ flux ratio. GaN nanowires were frequently observed to adopt the structural characteristics of the underlying AIN columns, including the size and the degree of tilt. Piezores-ponse force microscopy and polarity-sensitive etching indicate that the AIN films and the protruding columns have a mixed crystallographic polarity. Convergent beam electron diffraction indicates that GaN nanowires are Ga-polar, suggesting that Al-polar columns are nanowire nuclea-tion sites for Ga-polar nanowires. GaN nanowires of low density could be grown on AIN buffers that were predominantly N-polar with isolated Al-polar columns, indicating a high growth rate for Ga-polar nanowires and suppressed growth of N-polar nanowires under typical growth conditions. AIN buffer layers grown under slightly N-rich conditions (Ⅴ/Ⅲ flux ratio = 1.0 to 1.3) were found to provide a favorable growth surface for low-density, coalescence-free nanowires.
机译:发现通过在Si(111)上通过等离子体辅助分子束外延生长的低温AIN缓冲层会严重影响GaN纳米线的后续生长形态。 AIN缓冲层表现出纳米线状的柱状突起,其大小,形状和倾斜度由AINⅤ/Ⅲ通量比确定。经常观察到GaN纳米线采用了下面的AIN柱的结构特征,包括尺寸和倾斜度。压电响应力显微镜和极性敏感蚀刻表明AIN膜和突出柱具有混合的晶体学极性。会聚束电子衍射表明GaN纳米线是Ga极性的,这表明Al极性柱是Ga极性纳米线的纳米线核化位点。低密度GaN纳米线可以在主要为N极性且具有独立Al极性柱的AIN缓冲液上生长,这表明Ga极性纳米线的生长速率很高,并且在典型的生长条件下N极性纳米线的生长受到抑制。发现在稍微富氮的条件下生长的AIN缓冲层(Ⅴ/Ⅲ通量比= 1.0至1.3)为低密度,无聚结的纳米线提供了良好的生长表面。

著录项

  • 来源
    《Journal of Applied Physics》 |2011年第v110n5期|p.053506.1-053506.7|共7页
  • 作者单位

    Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder,Colorado 80305, USA,Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA,DARPA Center for Integrated MicrolNano-Electromechanical Transducers (iMINT), University of Colorado, Boulder, Colorado 80309, USA;

    Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg,Maryland 20899, USA;

    Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg,Maryland 20899, USA;

    Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder,Colorado 80305, USA;

    Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder,Colorado 80305, USA;

    Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA,DARPA Center for Integrated MicrolNano-Electromechanical Transducers (iMINT), University of Colorado, Boulder, Colorado 80309, USA;

    Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder,Colorado 80305, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号