...
首页> 外文期刊>Journal of Applied Physics >Oxygen vacancy induced phase and conductivity transition of epitaxial BaTiO_(3-δ) films directly grown on Ce (001) without surface passivation
【24h】

Oxygen vacancy induced phase and conductivity transition of epitaxial BaTiO_(3-δ) films directly grown on Ce (001) without surface passivation

机译:氧气空间诱导的外延BATIO_(3-δ)膜直接在CE(001)上生长的外延BATIO_(3-δ)膜的相和电导率转变而没有表面钝化

获取原文
获取原文并翻译 | 示例

摘要

The heterogeneous epitaxial system of BaTiO_3/Ge (BTO/Ge) is of great interest for both fundamental research and device applications, thanks to its quasi-lattice-matching feature and the integration of functional oxides on semiconductors. Currently, the heteroepitaxial growth of crystalline BTO films on Ge includes the utilization of ultrahigh vacuum tools and complex surface passivation pre-treatment as well as careful control of oxygen partial pressure during the growth. Meanwhile, oxygen vacancies in oxides strongly impact their structural and electrical properties. Here, we report a facile method to directly grow single crystalline BTO films on Ge using pulsed laser deposition. The strict control of oxygen partial pressure ensures a sharp interface with an atom-to-atom registry and also leads to the oxygen-deficient characteristics of BTO. The epitaxial relationship of BTO and Ge is [110] BTO (001)//[100] Ge (001). Detailed crystallography studies on BTO films with different thicknesses show that, for the films with a thickness less than 20 nm, BTO shows a mixture of tetragonal and cubic phases due to the oxygen vacancies and the strain from the Ge substrate and the cubic phase eventually dominates as the film thickness increases. Such oxygen-deficient BTO films reveal conducting characteristics rather than dielectric properties. The oxygen vacancies can be partly "cured" after a low temperature annealing process. These results not only demonstrate the possibility to directly grow single crystalline oxides on semiconductors without surface passivation but also highlight the importance of oxygen vacancies and lattice strain on the crystallographic and electrical properties of BTO films.
机译:由于其准晶格匹配特征和半导体上的功能氧化物的集成,BTIO_3 / GE(BTO / GE(BTO / GE)的异质外延系统对基础研究和设备应用具有极大的兴趣。目前,GE上的结晶BTO薄膜的异质生长包括利用超高真空工具和复杂的表面钝化预处理以及仔细控制在生长期间的氧分压。同时,氧化物中的氧气空位强烈影响其结构和电气性能。这里,我们报告了使用脉冲激光沉积在GE上直接生长单晶BTO薄膜的容易方法。严格控制氧气分压力确保了与原子对原子注册表的尖锐界面,也导致BTO的缺氧特性。 BTO和GE的外延关系是[110] BTO(001)// [100] GE(001)。对具有不同厚度的BTO膜的详细晶体学研究表明,对于厚度小于20nm的薄膜,BTO显示出由于氧空位和Ge衬底的含量和菌株而导致的四方和立方相的混合物最终占主导地位随着膜厚度的增加。这种缺氧BTO膜揭示了导电特性而不是介电性能。在低温退火过程后,氧气空位可以部分是“固化”。这些结果不仅证明了在没有表面钝化的情况下直接在半导体上生长单晶氧化物,而且突出了氧空位和晶格菌株对BTO薄膜的晶体和电学性能的重要性。

著录项

  • 来源
    《Journal of Applied Physics 》 |2021年第4期| 045302.1-045302.7| 共7页
  • 作者单位

    Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education & International Center for Dielectric Research School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an 710049 China;

    Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education & International Center for Dielectric Research School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an 710049 China;

    Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education & International Center for Dielectric Research School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an 710049 China;

    Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education & International Center for Dielectric Research School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an 710049 China;

    Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education & International Center for Dielectric Research School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an 710049 China;

    Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education & International Center for Dielectric Research School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an 710049 China;

    Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education & International Center for Dielectric Research School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an 710049 China;

    Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education & International Center for Dielectric Research School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an 710049 China;

    Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 China;

    Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 China;

    State Key Laboratory of Electronic Thin Films and Integrated Devices University of Electronic Science and Technology of China Chengdu 611731 China;

    Department of Chemistry and 4D LABS Simon Fraser University Burnaby British Columbia V5A 1S6 Canada;

    Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education & International Center for Dielectric Research School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an 710049 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号