...
首页> 外文期刊>Journal of Applied Physics >Control of relative electron densities and spacing of two laser induced plasmas by spatial light modulation of femtosecond laser
【24h】

Control of relative electron densities and spacing of two laser induced plasmas by spatial light modulation of femtosecond laser

机译:通过飞秒激光器的空间光调制控制两个激光诱导等离子体的相对电子密度和间距

获取原文
获取原文并翻译 | 示例
           

摘要

This study demonstrates a novel technique for independently controlling the relative electron densities and axial separation of two laser induced plasmas (LIPs) formed in air by an ultrashort pulse laser (USPL). A spatial light modulator (SLM) provides the means of control by altering the waveffont of a 35 fs, 1.6-2.5 mJ pulse from a Ti:Sapphire USPL with a 790 nm center wavelength. After modification by the SLM, a lens focuses the pulse, which increases its intensity and generates plasma by ionizing air. Holograms displayed on the SLM diffract a controlled amount of laser energy to a first-order focal spot some distance from the lens focus, and sufficient laser power generates two LIPs spaced from one another along the laser propagation direction. The hologram contrast dictates the relative intensity of the light arriving at each focus, and the spatial gradient of the phase shift applied by the hologram determines the distance between the two foci. Analytic solutions of linear light propagation and scalar diffraction theory computed with the convolution method are used to determine initial hologram designs meant to deliver various foci spacings and relative intensities. Ultrashort pulse lasers (USPLs) supply pulse powers sufficient to induce filamentation in air, a result of non-linear optical phenomena that extends the range of intense laser propagation and generates plasma. Comparing images of linear propagation at low laser powers with relative line-integrated electron density measurements taken during plasma formation indicate any extant non-linear processes do not prevent predictable control of plasma geometry for 0.3 m and 0.5 m focal lengths.
机译:该研究表明了一种独立地控制在空气中通过超短脉冲激光器(USPL)在空气中独立地控制相对电子密度和轴向分离的新技术。空间光调制器(SLM)通过改变35 FS的波截面,从TI的35 FS,1.6-2.5 MJ脉冲的波截面提供控制方法:蓝宝石USPL,具有790nm中心波长。通过SLM修改之后,镜头聚焦脉冲,这增加其强度并通过电离空气产生等离子体。在SLM上显示的全息图衍射到从透镜焦点的一定距离的一阶焦点的受控量的激光能量,并且充分的激光功率沿着激光传播方向产生两个彼此间隔开的嘴唇。全息图对比度决定了到达每个焦点的光的相对强度,并且通过全息图施加的相移的空间梯度确定两个焦点之间的距离。用卷积法计算的线性光传播和标量衍射理论的分析解用来确定初始全息图设计,以提供各种焦点间距和相对强度。超短脉冲激光器(USPLS)提供足以在空气中诱导丝的脉冲功率,其非线性光学现象的结果延伸了强激光传播的范围并产生等离子体。在等离子体形成期间采用相对线集成的电子密度测量的低激光功率在低激光功率下进行比较的图像表明,任何突出的非线性过程都不会阻止可预测的等离子体几何形状为0.3μm和0.5m的焦距。

著录项

  • 来源
    《Journal of Applied Physics》 |2020年第15期|154903.1-154903.14|共14页
  • 作者单位

    Naval Information Warfare Center Pacific San Diego California 92152 USA;

    Naval Information Warfare Center Pacific San Diego California 92152 USA;

    Naval Information Warfare Center Pacific San Diego California 92152 USA;

    Naval Information Warfare Center Pacific San Diego California 92152 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号