首页> 外文期刊>Journal of Applied Physics >Efficient anharmonic lattice dynamics calculations of thermal transport in crystalline and disordered solids
【24h】

Efficient anharmonic lattice dynamics calculations of thermal transport in crystalline and disordered solids

机译:高效的无声晶格动力学计算结晶和无序固体热输送

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Understanding heat transport in semiconductors and insulators is of fundamental importance because of its technological impact in electronics and renewable energy harvesting and conversion. Anharmonic lattice dynamics provides a powerful framework for the description of heat transport at the nanoscale. One of the advantages of this method is that it naturally includes quantum effects due to atoms vibrations, which are needed to compute the thermal properties of semiconductors widely used in nanotechnology, like silicon and carbon, even at room temperature. While the heat transport picture substantially differs between amorphous and crystalline semiconductors from a microscopic standpoint, a unified approach to simulate both crystals and glasses has been devised. Here, we introduce a unified workflow, which implements both the Boltzmann Transport equation and the quasi-harmonic Green-Kubo methods. We discuss how the theory can be optimized to exploit modern parallel architectures, and how it is implemented in кALDo: a versatile and scalable open-source software to compute phonon transport in solids. This approach is applied to crystalline and partially disordered silicon-based systems, including bulk silicon and clathrates, and on silicon-germanium alloy clathrates with largely reduced thermal conductivity.
机译:由于其在电子和可再生能源收获和转换中的技术影响,了解半导体和绝缘体中的热传输是重要的重要性。 Anharmonic格子动态提供了一种强大的框架,用于在纳米级的热传输描述。该方法的一个优点是它自然地包括由于原子振动而产生的量子效应,这是计算纳米技术广泛用于纳米技术的半导体的热性质,如硅和碳,即使在室温下也是如此。虽然热传输图像与微晶和结晶半导体之间的微晶和微晶间隔之间的不同之处不同,但已经设计了模拟晶体和玻璃的统一方法。在这里,我们介绍了一个统一的工作流程,它实现了Boltzmann传输方程和准谐波绿色kubo方法。我们讨论如何优化该理论以利用现代并行架构,以及如何在Кaldo中实现:多功能和可扩展的开源软件,用于计算固体中的声子传输。该方法应用于结晶和部分无序的基于硅基系统,包括散装硅和克拉族,并且在硅 - 锗合金克拉内族,具有大量降低的导热性。

著录项

  • 来源
    《Journal of Applied Physics》 |2020年第13期|135104.1-135104.11|共11页
  • 作者单位

    Department of Chemistry University of California Davis Davis California 95616 USA;

    Department of Chemistry University of California Davis Davis California 95616 USA;

    Department of Chemistry University of California Davis Davis California 95616 USA;

    Department of Chemistry University of California Davis Davis California 95616 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号