首页> 外文学位 >Predicting phonon properties and thermal conductivity using anharmonic lattice dynamics calculations.
【24h】

Predicting phonon properties and thermal conductivity using anharmonic lattice dynamics calculations.

机译:使用非谐晶格动力学计算预测声子性质和热导率。

获取原文
获取原文并翻译 | 示例

摘要

The ability to engineer materials on the nanoscale has given rise to the possibility of tailoring material properties such as the thermal conductivity. The alteration of the thermal properties is due to the interaction between the phonons and the geometry of these nano-structures. Phonons (i.e., lattice vibrations) are the primary energy carriers in insulating crystals, such as argon, silicon, and germanium. A fundamental understanding of the physics of phonon transport in such nano-structured materials and a means of computing their thermal conductivity are required to efficiently design these materials. Current techniques used to examine the lattice thermal conductivity of crystals use major approximations or are computationally intensive.;In this work, the anharmonic lattice dynamics method is presented and the challenges associated with implementing the method are addressed. The methodology is used to predict the thermal conductivity of crystalline argon in bulk. These predictions are validated with results from molecular dynamics simulations. The phonon properties predicted by the lattice dynamics method are used to show that some common assumptions and approximations about phonon transport are not true for all materials.;The lattice dynamics calculations are then used to study thermal transport in nano-structures. The boundaries and interfaces in thin films and superlattices present a modeling challenge. For thin films, a mode-dependent boundary scattering relation is derived and used to predict the in-plane thermal conductivity of argon and silicon thin films. For short period, ideal superlattices it is shown that the interfaces do not act as scattering sites but do affect the phonon population. The unique phonon properties in graphene and carbon nanotubes are predicted with lattice dynamics and compared to molecular dynamics predictions.;Finally, the unique abilities of the lattice dynamics techniques are used to assess the validity of quantum correcting classically-predicted thermal conductivities, such as those determined by molecular dynamics simulation. A direct assessment of the commonly used quantum corrects is made by self-consistently predicting the thermal conductivity for a quantum system and for the same system in the classical limit. These quantum corrections are shown to be inaccurate and the phonon properties are used to show that only methods that include the proper quantum phonon distribution in the prediction of the relaxation times can be used to predict a quantum thermal conductivity.;One technique that can be used to perform an accurate analysis of lattice thermal conductivity is the anharmonic lattice dynamics method. Anharmonic lattice dynamics is the natural extension of harmonic lattice dynamics, which can be used to calculate phonon frequencies. Anharmonic lattice dynamics provides detailed information about the phonon modes, such as frequencies, group velocities, and scattering rates, that is not typically found through other methods. Thus, it is an ideal method to use when predicting the thermal conductivity as the properties of the phonon modes provide additional insight into the physics of thermal transport.
机译:在纳米尺度上对材料进行工程设计的能力引起了调整材料特性(例如热导率)的可能性。热性质的改变归因于声子与这些纳米结构的几何形状之间的相互作用。声子(即晶格振动)是绝缘晶体(例如氩,硅和锗)中的主要能量载体。需要对这种纳米结构材料中的声子传输的物理原理有基本的了解,并需要一种计算其热导率的方法,以有效地设计这些材料。用于检查晶体晶格导热系数的当前技术使用主要近似值或计算量大。在这项工作中,提出了非调和晶格动力学方法,并解决了与实施该方法相关的挑战。该方法用于预测大量晶氩的热导率。这些预测得到了分子动力学模拟结果的验证。通过晶格动力学方法预测的声子性质被用来表明,关于声子传输的一些常见假设和近似并非适用于所有材料。;然后,使用晶格动力学计算来研究纳米结构中的热传输。薄膜和超晶格的边界和界面提出了建模挑战。对于薄膜,导出了与模式有关的边界散射关系,并将其用于预测氩和硅薄膜的面内热导率。对于短期的理想超晶格,表明界面不充当散射位点,但会影响声子的数量。用晶格动力学预测石墨烯和碳纳米管中的独特声子性质,并将其与分子动力学预测进行比较。最后,使用晶格动力学技术的独特能力来评估量子校正经典预测的热导率的有效性,例如那些由分子动力学模拟确定。通过自洽地预测量子系统和经典系统中同一系统的热导率,可以对常用的量子校正进行直接评估。这些量子校正被证明是不准确的,并且声子特性用于表明只有在弛豫时间的预测中包括正确的量子声子分布的方法才能用于预测量子热导率。;可以使用的一种技术进行晶格导热系数的准确分析是非谐晶格动力学方法。非谐晶格动力学是谐波晶格动力学的自然扩展,可用于计算声子频率。非谐晶格动力学提供有关声子模式的详细信息,例如频率,组速度和散射率,而其他方法通常无法找到这些信息。因此,这是一种理想的预测热导率的方法,因为声子模式的特性可提供对热传输物理学的进一步了解。

著录项

  • 作者

    Turney, Joseph E.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号