首页> 外文期刊>Journal of Applied Physics >Thermal boundary conductance between high thermal conductivity boron arsenide and silicon
【24h】

Thermal boundary conductance between high thermal conductivity boron arsenide and silicon

机译:高导热硼砷和硅之间的热边界电导

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Thermal boundary conductance (TBC) is important for heat dissipation in light-emitting diodes (LEDs). In this study, we predicted the TBC between the high thermal conductivity boron arsenide (BAs) and silicon (Si) by nonequilibrium molecular dynamics (MD) simulations. From the thermal conductivity accumulation function with respect to phonon frequency, the dominant phonon frequencies for heat conduction in BAs are extremely different from those in Si. However, our nonequilibrium MD simulations indicated that the TBC of the BAs/Si interface was still high compared to most other interfaces, even though there was a major frequency mismatch in the thermal conductivity accumulation function between BAs and Si. The primary reason for the high TBC is the overlap of phonon density of states between BAs and Si in the frequency range of 5-8 THz. The range of predicted TBC of the BAs/Si interface was between 200 and 300 MW/m~2 K in the temperature range of 300-700 K, and the values of the TBC were not sensitive to the temperature. We also found that the TBCs in Si/BAs and Si/Ge interfaces were close to each other considering the simulation uncertainty. This work indicates BAs as an excellent material for heat dissipation across the interfaces.
机译:热边界电导(TBC)对于发光二极管(LED)中的散热是重要的。在本研究中,通过非纤维分子动力学(MD)模拟,我们预测高导热硼砷(BAS)和硅(Si)之间的TBC。从相对于声子频率的导热累积函数,基于Si中的热传导的主导声子频率非常不同。然而,我们的非QuilibimMD模拟表明,与大多数其他接口相比,BAS / SI接口的TBC仍然高,即使在BAS和SI之间存在导热累积函数的主要频率不匹配。高TBC的主要原因是BAS和SI之间的声子密度的重叠,频率范围为5-8 ZHz。在300-700k的温度范围内,BAS / Si界面的预测TBC的范围在200至300mW / m〜2k之间,TBC的值对温度不敏感。我们还发现,考虑到模拟不确定性,SI / BAS和SI / GE接口中的TBC彼此接近。这项工作表明,Bas是围绕接口散热的优异材料。

著录项

  • 来源
    《Journal of Applied Physics》 |2020年第5期|055105.1-055105.7|共7页
  • 作者单位

    Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering Southeast University Nanjing 211189 China;

    Department of Mechanical Engineering Stevens Institute of Technology Hoboken New Jersey 07030 USA;

    Department of Mechanical Engineering Stevens Institute of Technology Hoboken New Jersey 07030 USA;

    Institute of Optoelectronics Shenzhen University Shenzhen 518060 China;

    Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering Southeast University Nanjing 211189 China;

    Department of Mechanical Engineering Stevens Institute of Technology Hoboken New Jersey 07030 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号