首页> 外文期刊>Journal of Applied Physics >Room temperature multiferroic properties of electrospun gallium ferrite nanofibers
【24h】

Room temperature multiferroic properties of electrospun gallium ferrite nanofibers

机译:电纺镓铁氧体纳米纤维的室温多体性能

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Gallium ferrite (GaFeO_3) is a promising multiferroic material for multifunctional device applications. Compared with bulk and thin film materials, nanofibers are possible to magnify the magnetostriction or piezoelectric effect due to their large length-diameter ratio, thus improving the performance of the material. In this work, Ga_xFe_(2-x)O_3 (GFO) nanofibers have been synthesized by sol-gel based electrospin-ning. With the increasing Fe ion content, the room-temperature antiferromagnetic to ferromagnetic transition of GFO nanofibers has been confirmed by magnetic hysteresis loops; and the corresponding temperature dependent magnetization curves show that the ferromagnetic-paramagnetic transition temperature (T_c) is above room temperature and increases from around 292 K to above 400 K. Ferroelectricity of GFO nanofibers has been confirmed by second harmonic generation and piezoresponse force microscopy. Magnetoelectric (ME) coupling has been further measured by dual amplitude resonance tracking piezoresponse force microscopy and sequential excitation piezoresponse force microscopy under an in-plane external magnetic field. The newly developed SE-PFM method reduces the crosstalk of morphology, confirming that no obvious intrinsic ME coupling appears in the GFO nanofibers.
机译:镓铁氧体(GAFEO_3)是一种用于多功能器件应用的有希望的多体材料。与散装和薄膜材料相比,纳米纤维可以通过它们的大长度比例放大磁致伸缩或压电效果,从而提高材料的性能。在这项工作中,通过基于溶胶 - 凝胶的电扫相液合成了Ga_xFe_(2-X)O_3(GFO)纳米纤维。随着Fe离子含量的增加,GFO纳米纤维的室温反铁磁性通过磁滞环证实了GFO纳米纤维的转变;并且相应的温度相关的磁化曲线表明,铁磁 - 顺磁化转变温度(T_C)高于室温,并且从左右292k增加到400k的增加。通过第二谐波产生和压电响应力显微镜证实了GFO纳米纤维的铁电性。通过双幅度谐振跟踪压电响应力显微镜和在平面内外部磁场下的顺序激励压电响应力显微镜进行了进一步测量磁电(ME)耦合。新开发的SE-PFM方法减少了形态的串扰,确认在GFO纳米纤维中没有明显的内在偶联。

著录项

  • 来源
    《Journal of Applied Physics》 |2020年第13期|134101.1-134101.7|共7页
  • 作者单位

    Hunan Provincial Key Laboratory of Thin Film Materials and Devices School of Materials Science and Engineering Xiangtan University Xiangtan 411105 China;

    Hunan Provincial Key Laboratory of Thin Film Materials and Devices School of Materials Science and Engineering Xiangtan University Xiangtan 411105 China Shenzhen Key Laboratory of Nanobiomechanics Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China;

    Hunan Provincial Key Laboratory of Thin Film Materials and Devices School of Materials Science and Engineering Xiangtan University Xiangtan 411105 China;

    Hunan Provincial Key Laboratory of Thin Film Materials and Devices School of Materials Science and Engineering Xiangtan University Xiangtan 411105 China;

    Shenzhen Key Laboratory of Nanobiomechanics Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China;

    Hunan Provincial Key Laboratory of Thin Film Materials and Devices School of Materials Science and Engineering Xiangtan University Xiangtan 411105 China;

    Shenzhen Key Laboratory of Nanobiomechanics Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China;

    Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education School of Materials Science and Engineering Xiangtan University Xiangtan 411105 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号