...
首页> 外文期刊>Journal of Applied Physics >Deep level defects and cation sublattice disorder in ZnGeN_2
【24h】

Deep level defects and cation sublattice disorder in ZnGeN_2

机译:Zngen_2的深层缺陷和阳离子紊乱

获取原文
获取原文并翻译 | 示例

摘要

Ⅲ-nitrides have revolutionized lighting technology and power electronics. Expanding the nitride semiconductor family to include heterova-lent ternary nitrides opens up new and exciting opportunities for device design that may help overcome some of the limitations of the binary nitrides. However, the more complex cation sublattice also gives rise to new interactions with both native point defects and defect complexes that can introduce disorder on the cation sublattice. Here, depth-resolved cathodoluminescence spectroscopy and surface photo-voltage spectroscopy measurements of defect energy levels in ZnGeN_2 combined with transmission electron microscopy and x-ray diffraction reveal optical signatures of mid-gap states that can be associated with cation sublattice disorder. The energies of these characteristic optical signatures in ZnGeN_2 thin films grown by metal-organic chemical vapor deposition are in good agreement with multiple, closely spaced band-like defect levels predicted by density functional theory. We correlated spatially resolved optical and atomic composition measurements using spatially resolved x-ray photoelectron spectroscopy with systematically varied growth conditions on the same ZnGeN_2 films. The resultant elemental maps vs defect spectral energies and intensities suggest that cation antisite complexes (Zn_(Ge)-Ge_(Zn)) form preferentially vs isolated native point defects and introduce a mid-gap band of defect levels that dominate electron-hole pair recombination. Complexing of Zn_(Ge) and Ge_(Zn) antisites manifests as disorder in the cation sub-lattice and leads to the formation of wurtzitic ZnGeN_2 as indicated by transmission electron microscopy diffraction patterns and x-ray diffraction reciprocal space maps. These findings emphasize the importance of growth and processing conditions to control cation place exchange.
机译:Ⅲ-氮化物具有彻底改变的照明技术和电力电子。扩展氮化物半导体家族以包括杂酰基三元氮化物为器件设计开辟了新的和激励机会,这可能有助于克服二元氮化物的一些局限性。然而,较复杂的阳离子子组织也引起了与本地点缺陷和缺陷复合物的新相互作用,这些缺陷复合物可以引入阳离子子组件。这里,与透射电子显微镜和X射线衍射组合的深度分辨的阴极发光光谱和表面光电压光谱测量Zngen_2中的缺陷能量水平和X射线衍射揭示了可以与阳离子紊乱相关联的中间隙状态的光学签名。通过金属 - 有机化学气相沉积生长的Zngen_2薄膜中这些特征光学签名的能量与密度函数理论预测的多个紧密间隔的带状缺陷水平良好。我们使用空间分辨的X射线光电子能谱与在相同的Zngen_2膜上的系统变化的生长条件相关,在空间上分辨的光学和原子组成测量。得到的元素映射与缺陷谱能量和强度表明,阳离子反筋复合物(Zn_(Ge)-ge_(Zn))优先与分离的本机点缺陷形成,并引入缺陷水平的中间隙频带,其主导电子 - 孔对重组。 Zn_(Ge)和Ge_(Zn)的络合抗烧伤在阳离子晶格中表现为紊乱,并导致透射电子显微镜衍射图案和X射线衍射往复式空间图所示的Wurtzitic Zngen_2。这些调查结果强调了增长和加工条件对控制阳离处交换的重要性。

著录项

  • 来源
    《Journal of Applied Physics 》 |2020年第13期| 135703.1-135703.9| 共9页
  • 作者单位

    Department of Physics The Ohio State University Columbus Ohio 43210 USA;

    Department of Electrical and Computer Engineering The Ohio State University Columbus Ohio 43210 USA;

    Department of Physics The Ohio State University Columbus Ohio 43210 USA;

    Department of Physics The Ohio State University Columbus Ohio 43210 USA;

    Columbus School for Girls Columbus Ohio 43209 USA;

    Department of Physics Case Western Reserve University Cleveland Ohio 44106 USA;

    Department of Physics Case Western Reserve University Cleveland Ohio 44106 USA;

    Department of Materials Science and Engineering The Ohio State University Columbus Ohio 43210 USA;

    Department of Materials Science and Engineering The Ohio State University Columbus Ohio 43210 USA;

    Department of Physics Case Western Reserve University Cleveland Ohio 44106 USA;

    Department of Electrical and Computer Engineering The Ohio State University Columbus Ohio 43210 USA Department of Materials Science and Engineering The Ohio State University Columbus Ohio 43210 USA;

    Department of Physics The Ohio State University Columbus Ohio 43210 USA Department of Electrical and Computer Engineering The Ohio State University Columbus Ohio 43210 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号