首页> 外文期刊>Journal of Applied Physics >Tuning the bandgap and introducing magnetism into monolayer BC_3 by strain/defect engineering and adatom/molecule adsorption
【24h】

Tuning the bandgap and introducing magnetism into monolayer BC_3 by strain/defect engineering and adatom/molecule adsorption

机译:通过应变/缺陷工程和Adatom /分子吸附调整带隙并将磁力引入单层BC_3

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Using first-principles calculations, we study the structural, electronic, and optical properties of pristine BC3. Our results show that BC3 is a semiconductor which can be useful in optoelectronic device applications. Furthermore, we found that the electronic properties of BC3 can be modified by strain and the type of edge states. With increasing thickness, the indirect bandgap decreases from 0.7 eV (monolayer) to 0.27 eV (bulk). Upon uniaxial tensile strain along the armchair and zigzag directions, the bandgap slightly decreases, and with increasing uniaxial strain, the bandgap decreases, and when reaching -8%, a semiconductor-to-metal transition occurs. By contrast, under biaxial strain, the bandgap increases to 1.2 eV in +8% and decreases to zero in -8%. BC3 nanoribbons with different widths exhibit magnetism at the zigzag edges, while, at the armchair edges, they become semiconductor, and the bandgap is in the range of 1.0-1.2 eV. Moreover, we systematically investigated the effects of adatoms/molecule adsorption and defects on the structural, electronic, and magnetic properties of BC3. The adsorption of various adatoms and molecules as well as topological defects (vacancies and Stone-Wales defects) can modify the electronic properties. Using these methods, one can tune BC3 into a metal, half-metal, ferromagnetic-metal, and dilute-magnetic semiconductor or preserve its semiconducting character. Published under license by AIP Publishing.
机译:使用第一原理计算,我们研究了原始BC3的结构,电子和光学性质。我们的结果表明,BC3是一种半导体,可用于光电器件应用。此外,我们发现BC3的电子特性可以通过应变和边缘状态的类型来修改。随着厚度的增加,间接带隙从0.7eV(单层)降低至0.27eV(散装)。在沿扶手椅和曲折方向的单轴拉伸应变时,带隙略微降低,并且随着单轴应变的增加,带隙降低,并且在达到-8%时,发生半导体到金属转变。相比之下,在双轴应变下,带隙增加到1.2eV,+ 8%+ 8%,减少至零-8%。 BC3具有不同宽度的纳米波纹在锯齿形边缘的磁性,而在扶手椅边缘处,它们变为半导体,带隙在1.0-1.2eV的范围内。此外,我们系统地研究了BC3的结构,电子和磁性对结构,电子和缺陷的影响。各种吸附和分子的吸附以及拓扑缺陷(空位和石威尔士缺陷)可以改变电子特性。使用这些方法,可以将BC3调节成金属,半金属,铁磁 - 金属和稀磁半导体或保持其半导体特征。通过AIP发布在许可证下发布。

著录项

  • 来源
    《Journal of Applied Physics》 |2019年第14期|144304.1-144304.13|共13页
  • 作者单位

    Univ Guilan Dept Phys Rasht 413351914 Iran|Univ Antwerp Dept Phys Groenenborgerlaan 171 B-2020 Antwerp Belgium;

    Univ Guilan Dept Phys Rasht 413351914 Iran;

    Sungkyunkwan Univ Coll Elect & Elect Engn Suwon 16419 South Korea;

    Univ Antwerp Dept Phys Groenenborgerlaan 171 B-2020 Antwerp Belgium;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号