首页> 外文期刊>Journal of Applied Physics >A dynamic-difference approach to scan probe microwave reflectivity mapping of the nanoscale electronic properties of single-walled carbon nanotubes
【24h】

A dynamic-difference approach to scan probe microwave reflectivity mapping of the nanoscale electronic properties of single-walled carbon nanotubes

机译:一种动态差异方法,扫描单壁碳纳米管纳米级电子性能探头微波反射率映射

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Understanding carbon nanotubes (CNTs) based electronic devices requires strategies to characterize individual nanotube electronic properties. We will explore a new nonevasive approach to microwave impedance microscopy (MIM) which, we hypothesize, utilizes the ambient water layer as a nanoscale high permittivity medium. This approach eliminates the need for a thin metal oxide surface layer, used in contact mode MIM-AFM of CNTs, which completely obscures resistance mapping and can increase surface roughness by 10x. The potential novelty of our proposed MIM methodology is that the water meniscus, known to form beneath the tip, creates a localized high permittivity environment between the tip and the surface. The materials microwave response image is extracted from the "capacitive difference" observed on trajectories' measures via the transmission line cantilever during approach. We can mechanically detect the water meniscus formation using AFM force curves while simultaneously mapping resistance, capacitance, and topography. When comparing signal-to-noise (SNR), to contact MIM-AFM, our results suggest a 2x increase in MIM capacitance SNR, 10-100x improvement in MIM resistance SNR, and up to 3x increase in the capacitance mapping resolution by reducing the effects of tip-surface spatial convolution. Published under license by AIP Publishing.
机译:了解基于碳纳米管(CNT)的电子设备需要策略来表征个别纳米管电子特性。我们将探讨一种新的绝大波阻抗显微镜(MIM)的方法,我们假设,利用环境水层作为纳米级高介质介质。该方法消除了在CNT的接触模式MIM-AFM中使用的薄金属氧化物表面层的需要,这完全模糊了电阻映射并且可以通过> 10x增加表面粗糙度。我们所提出的MIM方法的潜在新颖性是,已知在尖端下方形成的水弯月面在尖端和表面之间形成局部高介电常数环境。材料微波响应图像从轨迹悬臂上观察到的轨迹距离的“电容差”提取。我们可以使用AFM力曲线机械地检测水弯月面形成,同时绘制电阻,电容和地形。当比较信号 - 噪声(SNR)时,联系MIM-AFM,我们的结果表明MIM电容SNR的MIM电容SNR的增加,MIM电阻SNR的10-100x提高,通过减少增加电容映射分辨率的3倍增加尖端空间卷积的影响。通过AIP发布在许可证下发布。

著录项

  • 来源
    《Journal of Applied Physics》 |2019年第17期|174303.1-174303.12|共12页
  • 作者单位

    Univ Illinois Dept Mat Sci & Engn Champaign IL 61820 USA;

    Univ Illinois Frederick Seitz Mat Res Lab Urbana IL 61801 USA;

    Asylum Res Oxford Instruments Goleta CA 03117 USA;

    Univ Illinois Frederick Seitz Mat Res Lab Urbana IL 61801 USA|Harvard Univ Ctr Nanoscale Syst Fac Arts & Sci Cambridge MA 02138 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号