...
首页> 外文期刊>Journal of Applied Physics >Effect of shell thickness of gold-silica core-shell nanospheres embedded in an organic buffer matrix for plasmonic solar cells
【24h】

Effect of shell thickness of gold-silica core-shell nanospheres embedded in an organic buffer matrix for plasmonic solar cells

机译:嵌入有机缓冲基质中的金二氧化硅核心壳纳米球壳厚度的影响等离子体太阳能电池

获取原文
获取原文并翻译 | 示例
           

摘要

The integration of metal nanoparticles in an organic buffer matrix for plasmonic organic solar cells (OSCs) has been explored as a route for improving the photovoltaic performance, with localized electromagnetic field enhancement around nanoparticles. We investigate the optical behavior of gold-silica core-shell nanospheres (Au@SiO2 NSs) with different shell thicknesses integrated into a 30 nm-thick poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) layer which is traditionally used as a buffer layer in OSCs. The morphology and size of the chemically synthesized Au@SiO2 NSs are determined by TEM, indicating that the average diameter of the Au core is about 50 nm, while the thickness of the dielectric shell can be adjusted to around 5 or 10 nm. The effect of Au@SiO2 NSs on the surrounding electromagnetic field in such a heterogeneous matrix and subsequent multilayers is examined using a numerical simulation based on a 3D-FDTD method. Furthermore, a broadband absorption enhancement in the films, which can be primarily attributed to far-field scattering and also to the localized surface plasmon resonance around the wavelength of 530 nm, is observed in the simulated and measured absorption spectra. The analysis of the electromagnetic field between NSs and the active layer using Raman spectroscopy is also presented. The Raman spectra confirm that a plasmon effect occurs and induces a strong field enhancement; this does not change the Raman peak position but increases its signal intensity depending on the silica shell's thickness. As a result, plasmonic devices including Au@SiO2 NSs with a 5 nm-shell thickness present the best optical behavior compared to bare NSs or 10 nm-thick shell Au@SiO2 NSs. Published by AIP Publishing.
机译:金属纳米颗粒在有机缓冲基质中的整合术语是用于改善光伏性能的途径,其围绕纳米颗粒增强了纳米颗粒的途径。我们研究了用不同的壳体厚度集成到30nm厚的聚(3,4-亚乙二氧基噻吩)-poly(苯乙烯磺酸盐)层中的不同壳体厚度的光学行为 - 传统上用作a在OSC中缓冲层。通过TEM确定化学合成的Au @ SiO 2 NSS的形态和尺寸,表明Au芯的平均直径约为50nm,而介电壳的厚度可以调节至约5或10nm。使用基于3D-FDTD方法的数值模拟检查在这种异构基质和随后多层的周围电磁场上的Au @ siO2 nss对周围电磁场的影响。此外,在模拟和测量的吸收光谱中,观察到薄膜中的薄带吸收增强,其主要归因于围绕波长为530nm的波长的局部表面等离子体共振。还介绍了使用拉曼光谱法在NSS和活性层之间的电磁场的分析。拉曼光谱确认发生等离子体效应并诱导强大的现场增强;这不会改变拉曼峰位置,而是根据二氧化硅壳的厚度提高其信号强度。结果,与裸NSS或10nm厚的外壳Au @ SiO2 NSS相比,包括具有5nm-shell厚度的Au @ SiO2 NSS的等离子体装置,其最佳光学行为。通过AIP发布发布。

著录项

  • 来源
    《Journal of Applied Physics》 |2018年第6期|063102.1-063102.9|共9页
  • 作者单位

    Aix Marseille Univ CNRS Inst Mat Microelect Nanosci Provence IM2NP UMR 7334 Domaine Univ St Jerome Serv 231 F-13397 Marseille 20 France;

    Univ Bordeaux ICMCB CNRS UPR 9048 F-33600 Pessac France;

    Aix Marseille Univ CNRS Inst Mat Microelect Nanosci Provence IM2NP UMR 7334 Domaine Univ St Jerome Serv 231 F-13397 Marseille 20 France;

    Univ Bordeaux ICMCB CNRS UPR 9048 F-33600 Pessac France;

    Aix Marseille Univ CNRS Inst Mat Microelect Nanosci Provence IM2NP UMR 7334 Domaine Univ St Jerome Serv 231 F-13397 Marseille 20 France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号