...
首页> 外文期刊>Journal of Applied Physics >Phonon energy dissipation in friction between graphene/graphene interface
【24h】

Phonon energy dissipation in friction between graphene/graphene interface

机译:石墨烯/石墨烯界面之间的摩擦中的声子能量耗散

获取原文
获取原文并翻译 | 示例

摘要

The theory of phononic friction attributes that the multiphonon processes are the main cause of the mechanical energy dissipation in a wear-free friction process. Unfortunately, it is still impossible to set up a direct relationship between the phonons and the frictional force. In this study, a classical molecular dynamics simulation model is used to mimic a piece of graphene sliding over a supported graphene substrate. It is found that the lifetime of some phonons, especially the modes around the Gamma point of the first Brillouin zone, gradually decreases with the increase of the sliding velocity. A phonon lifetime-based model is proposed to explain the variation of the frictional force as a function of the sliding velocity, i.e., the shorter phonon lifetime corresponding to a higher friction force under the same temperature. This model is consistent with the traditional Prandtl-Tomlinson model at a low sliding velocity range, which predicts that the friction force increases logarithmically with the sliding velocity. Once the sliding velocity exceeds a critical value, the lifetime of the excited phonons is far longer than the time for the tip sweeping a lattice constant. In this case, the excited phonons do not have enough time to dissipate the mechanical energy, which leads to the reduced friction force with the increase of the sliding velocity. Published under license by AIP Publishing.
机译:声子摩擦理论认为,多声子过程是无磨损摩擦过程中机械能耗散的主要原因。不幸的是,仍然无法在声子与摩擦力之间建立直接关系。在这项研究中,经典的分子动力学模拟模型用于模拟在支撑的石墨烯基底上滑动的石墨烯。发现某些声子的寿命,尤其是第一布里渊区伽玛点附近的模随着滑动速度的增加而逐渐减小。提出了一种基于声子寿命的模型来解释摩擦力随滑动速度的变化,即在相同温度下较短的声子寿命对应于较高的摩擦力。该模型与传统的Prandtl-Tomlinson模型在低滑动速度范围内一致,该模型预测摩擦力随滑动速度呈对数增加。一旦滑动速度超过临界值,受激声子的寿命将远大于尖端扫掠晶格常数的时间。在这种情况下,受激声子没有足够的时间消散机械能,这导致摩擦力随着滑动速度的增加而减小。由AIP Publishing授权发布。

著录项

  • 来源
    《Journal of Applied Physics 》 |2020年第1期| 015105.1-015105.8| 共8页
  • 作者单位

    Southeast Univ Jiangsu Key Lab Design & Manufacture Micro Nano B Nanjing 211189 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号