...
首页> 外文期刊>Journal of Applied Physics >Elastic-plastic deformation of molybdenum single crystals shocked to 12.5 GPa: Crystal anisotropy effects
【24h】

Elastic-plastic deformation of molybdenum single crystals shocked to 12.5 GPa: Crystal anisotropy effects

机译:冲击到12.5 GPa的钼单晶的弹塑性变形:晶体各向异性效应

获取原文
获取原文并翻译 | 示例
           

摘要

To understand crystal anisotropy effects on shock-induced elastic-plastic deformation of molybdenum (Mo), results from high-purity single crystals shocked along [110] and [111] orientations to an elastic impact stress of 12.5 GPa were obtained and compared with the [100] results previously reported [A. Mandal and Y. M Gupta, J. Appl. Phys. 121, 045903 (2017)]. Measured wave profiles showed a time-dependent response, and strong anisotropy was observed in the elastic wave attenuation with the propagation distance, elastic limits, shock speeds, and overall structure of the wave profiles. Resolved shear stresses on {110} 111 and {112} 111 slip systems provided insight into the observed anisotropy in elastic wave attenuation and elastic limits and showed that shear stresses, and not longitudinal stresses, are a better measure of strength in shocked single crystals. Under shock compression, resolved shear stresses at elastic limits were comparable to the Peierls stress of screw dislocations in Mo. Elastic wave attenuation was rapid when shear stresses were larger than the Peierls stress. Large differences in the elastic limits under shock and quasi-static loading are likely a consequence of the large Peierls stress value for Mo. Numerically simulated wave profiles, obtained using the dislocation-based plasticity model described in the [100] work, showed good agreement with all measured wave profiles but could not differentiate between the {110} 111 and {112} 111 slip systems. Overall, experimental results and corresponding numerical simulations for the three crystal orientations have provided a comprehensive insight into shock-induced elastic-plastic deformation of Mo single crystals, including the development of a continuum material model. Published under license by AIP Publishing.
机译:为了解晶体各向异性对激波引起的钼(Mo)弹塑性变形的影响,获得了沿[110]和[111]方向激波到12.5 GPa弹性冲击应力的高纯度单晶的结果,并将其与[100]先前报告的结果[A. Mandal和Y.M Gupta,J.Appl。物理121,045903(2017)]。测得的波剖面显示出随时间变化的响应,并且在弹性波衰减中观察到强烈的各向异性,并具有波剖面的传播距离,弹性极限,冲击速度和整体结构。 {110} <111>和{112} <111>滑移系统上的解析切应力提供了对所观察到的弹性波衰减和弹性极限各向异性的洞察力,并表明,切应力而不是纵向应力是一种更好的强度指标。震惊的单晶。在冲击压缩下,弹性极限处的解析剪切应力与Mo中螺杆位错的Peierls应力相当。当剪切应力大于Peierls应力时,弹性波衰减很快。 Mo的Peierls应力值很大,可能是在冲击和准静态载荷下弹性极限的较大差异。使用在[100]工作中描述的基于位错的可塑性模型获得的数值模拟波剖面显示出良好的一致性具有所有测得的波廓,但无法区分{110} <111>和{112} <111>滑移系统。总体而言,三个晶体取向的实验结果和相应的数值模拟提供了对Mo单晶冲击诱发的弹塑性变形的全面了解,包括建立连续材料模型。由AIP Publishing授权发布。

著录项

  • 来源
    《Journal of Applied Physics》 |2019年第5期|055903.1-055903.11|共11页
  • 作者

    Mandal A.; Gupta Y. M.;

  • 作者单位

    Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA|Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA;

    Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA|Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号