...
首页> 外文期刊>Journal of Applied Physics >Defects, conductivity and photoconductivity in Ar~+ bombarded KTaO_3
【24h】

Defects, conductivity and photoconductivity in Ar~+ bombarded KTaO_3

机译:Ar〜+轰击的KTaO_3中的缺陷,电导率和光电导率

获取原文
获取原文并翻译 | 示例

摘要

Oxygen vacancies play a crucial role in the conductivity of oxides. Here, we report the photoresponse of the electron doped surface of Ar+ bombarded oxygen vacant (001) KTaO3 (KTO) single crystal. The bombardment time defines the amount of oxygen vacancies and hence the electron doping level. The time evolution of photoresponse to daylight illumination remains independent of the carrier density and follows the biexponential function. By contrast, the amplitude of the photoresponse increases with the decreasing charge carrier density. The samples show distinct responses in terms of amplitude as well as response time to the illumination with laser light of wavelengths 633, 532, and 405nm. The defect states distribution within the bandgap is calculated with the photoconductivity relaxation, which involves deep sensitizing hole traps. The combined results of electrical conductivity, photoconductivity, atomic force microscopy, and Kelvin probe force microscopy suggest that the conductivity produced on the KTO surface is not continuous throughout the surface. Rather, Ar+ bombardment creates oxygen deficiency patches that are oriented along some preferential crystal orientations and interconnected with each other, thus producing percolating conducting channels on the surface of the sample. Under light illumination, photocarriers are generated in these conducting channels.
机译:氧空位在氧化物的电导率中起关键作用。在这里,我们报告Ar +轰击的氧空位(001)KTaO3(KTO)单晶的电子掺杂表面的光响应。轰击时间定义了氧空位的数量,从而定义了电子掺杂水平。对日光照射的光响应的时间演化保持与载流子密度无关,并遵循双指数函数。相反,光响应的幅度随着电荷载流子密度的降低而增加。样品在振幅以及对波长为633、532和405nm的激光照射的响应时间方面表现出明显的响应。带隙内的缺陷态分布是通过光电导弛豫来计算的,这涉及到深敏化空穴陷阱。电导率,光电导率,原子力显微镜和开尔文探针力显微镜的综合结果表明,在KTO表面上产生的电导率在整个表面上不是连续的。相反,Ar +轰击会产生缺氧斑块,这些缺陷斑块沿某些优先晶体取向定向并相互连接,从而在样品表面产生渗漏的导电通道。在光照下,在这些导电通道中产生了光载流子。

著录项

  • 来源
    《Journal of Applied Physics 》 |2019年第3期| 035303.1-035303.7| 共7页
  • 作者单位

    Inst Nano Sci & Technol, Nanoscale Phys & Device Lab, Phase 10,Sect 64, Mohali 160062, Punjab, India;

    Inst Nano Sci & Technol, Nanoscale Phys & Device Lab, Phase 10,Sect 64, Mohali 160062, Punjab, India;

    Indian Inst Sci Educ & Res Mohali, Sect 81, Manauli 140306, India;

    Indian Inst Sci Educ & Res Mohali, Sect 81, Manauli 140306, India;

    Indian Inst Sci, Solid State & Struct Chem Unit, Bangalore 560012, Karnataka, India;

    RIKEN, Ctr Emergent Matter Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan;

    Inst Nano Sci & Technol, Nanoscale Phys & Device Lab, Phase 10,Sect 64, Mohali 160062, Punjab, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号