...
首页> 外文期刊>Journal of Applied Physics >Optimizing the design of composite phase change materials for high thermal power density
【24h】

Optimizing the design of composite phase change materials for high thermal power density

机译:优化复合相变材料的设计以实现高热功率密度

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Phase change materials (PCMs) provide a high energy density for thermal storage systems but often suffer from limited power densities due to the low PCM thermal conductivity. Much like their electrochemical analogs, an ideal thermal energy storage medium combines the energy density of a thermal battery with the power density of a thermal capacitor. Here, we define the design rules and identify the performance limits for rationally-designed composites that combine an energy dense PCM with a thermally conductive material. Beginning with the Stefan-Neumann model, we establish the material design space using a Ragone framework and identify regimes where hybrid conductive- capacitive composites have thermal power densities exceeding that of copper and other high conductivity materials. We invoke the mathematical bounds on isotropic conductivity to optimize and define the theoretical limits for transient cooling using PCM composites. We then demonstrate the impact of power density on thermal transients using copper inverse opals infiltrated with paraffin wax to suppress the temperature rise in kW cm(-2) hotspots by similar to 10% compared to equivalent copper thin film heat spreaders. These design rules and performance limits illuminate a path toward the rational design of composite phase change materials capable of buffering extreme transient thermal loads. Published by AIP Publishing.
机译:相变材料(PCM)为蓄热系统提供了高能量密度,但由于PCM导热系数低,通常会受到功率密度的限制。与其电化学类似物非常相似,理想的热能存储介质将热电池的能量密度与热电容器的功率密度结合在一起。在这里,我们定义设计规则并确定合理设计的复合材料的性能极限,这些复合材料将能量密集的PCM与导热材料结合在一起。从Stefan-Neumann模型开始,我们使用Ragone框架建立材料设计空间,并确定混合导电-电容性复合材料的热功率密度超过铜和其他高导电性材料的结构。我们调用各向同性电导率的数学界限,以优化和定义使用PCM复合材料进行瞬态冷却的理论极限。然后,我们演示了使用石蜡渗透的铜反蛋白石将功率密度对热瞬态的影响,与等效的铜薄膜散热器相比,将kW cm(-2)热点的温度升高抑制了约10%。这些设计规则和性能限制为合理设计能够缓冲极端瞬态热负荷的复合相变材料开辟了道路。由AIP Publishing发布。

著录项

  • 来源
    《Journal of Applied Physics》 |2018年第14期|145103.1-145103.13|共13页
  • 作者单位

    Northrop Grumman Corp, NG Next Basic Res Lab, Redondo Beach, CA 90278 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Northrop Grumman Corp, NG Next Basic Res Lab, Redondo Beach, CA 90278 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号