...
首页> 外文期刊>Journal of Applied Physics >Bipolar to unipolar mode transition and imitation of metaplasticity in oxide based memristors with enhanced ionic conductivity
【24h】

Bipolar to unipolar mode transition and imitation of metaplasticity in oxide based memristors with enhanced ionic conductivity

机译:具有增强的离子电导率的氧化物基忆阻器的双极至单极模式转变和仿生性模仿

获取原文
获取原文并翻译 | 示例

摘要

Neuromorphic engineering offers a promising route toward intelligent and low power computing systems that may find applications in artificial intelligence and the Internet. Construction of neuromorphic systems, however, requires scalable nanodevices that could implement the key functionalities of biological synapses. Here, we demonstrate an artificial synaptic device consisting of a Ti/yttria-stabilized-zirconia (ZrO2:Y)/Pt memristive structure, where the loss microstructure, high oxygen vacancy concentration, and resultant high ionic conductivity in ZrO2:Y facilitate the oxygen vacancy migration and filament evolution in the devices, leading to a bipolar artificial synapse with low forming and operation voltages. As the thickness of ZrO2:Y film increases, a transition from bipolar to unipolar resistive switching was observed, which can be ascribed to the competing vertical and radial ion transport dynamics. The emergence of unipolar switching has in turn allowed the device to exhibit metaplasticity, a history dependent plasticity that is important for memory and learning functions. This work thus demonstrates on-demand manipulation of ionic transport properties for building synaptic elements with rich functionalities. Published by AIP Publishing.
机译:神经形态工程学为通往可能在人工智能和互联网中找到应用的智能和低功耗计算系统提供了一条有希望的途径。然而,神经形态系统的构建需要可扩展的纳米设备,该设备可以实现生物突触的关键功能。在这里,我们演示了由Ti /氧化钇稳定的氧化锆(ZrO2:Y)/ Pt忆阻性结构组成的人工突触设备,其中损失的微结构,高的氧空位浓度以及在ZrO2:Y中产生的高离子电导率促进了氧气器件中的空位迁移和细丝进化,导致形成和工作电压低的双极人工突触。随着ZrO2:Y膜厚度的增加,观察到从双极电阻转换到单极电阻转换,这可以归因于竞争的垂直和径向离子传输动力学。单极开关的出现反过来又使该装置表现出可塑性,这是一种依赖于历史的可塑性,对记忆和学习功能很重要。因此,这项工作证明了对离子转运特性的按需操纵,可用于构建具有丰富功能的突触元件。由AIP Publishing发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号