首页> 外文学位 >Enhancing the ionic conductivity of solid state electrolytes by oxide glass doping.
【24h】

Enhancing the ionic conductivity of solid state electrolytes by oxide glass doping.

机译:通过氧化物玻璃掺杂增强固态电解质的离子电导率。

获取原文
获取原文并翻译 | 示例

摘要

As the increasing use of lithium ion secondary batteries in practical application, solid state electrolyte attracted lots of attention since it's a crucial part for the lithium ion secondary batteries. Compare with liquid electrolyte, the advantage of solid state electrolyte covering no electron leakage, safety, chemical and thermal stability, high energy density and so on. However, one disadvantage of inorganic solid state electrolyte is the low ionic conductivity which is primarily due to its low grain boundary conductivity. Among all of the solid state electrolyte candidates for lithium battery applications, the perovskite structure lanthanum lithium titanate (La2/3-x □1/3-2xLi3xTiO3) has the best lithium ionic conductivity, which can reach 10-3S/cm in the grain bulk, but typically only 10-6S/cm at the grain boundary.;It has been found that the addition of amorphous phases doped into the LLTO grain boundary can significantly improve its overall conductivity. Several candidates for use as a suitable, high conducting amorphous dopant with the best properties were considered. The sulfide glass system is widely recognized as being the highest lithium ion conducting amorphous system. However, the difficulties associated with its fabrication and instability in air along with possible reactions with oxide materials are major drawbacks to its application as a dopant in the LLTO system. These are not problems found in the oxide glass system and so we looked at several oxide glass formers. Previously, people introduced boron trioxide, silica and alumina as single composition amorphous phase dopants into LLTO in an effort to improve its grain boundary conductivity. To obtain further enhancements to the grain boundary ionic conductivity, composite composition oxide glasses were investigated. As it turns out, some of these systems can reach the ionic conductivity of LLTO grain bulk.;In the present work, we used the melt quench method to make different compositions of the 0.4Li2O+0.25B2O3+(0.35-x)SiO 2+xAl2O3 glass system and doped these into the LLTO grain boundary to enhance its ionic conductivity. SiO2 is generally used as a base glass former. Substitution of Si by Al is believed to decrease the activation energy of the glass, and furthermore, B2O 3 and Al2O3 can be treated as a network former of alkali glass. Our result shows that, at room temperature, the best conductivity can reach 3.4x10-4S/cm at the grain boundary. The amount of Al2O3 was found to play a crucial role in the conductivity of this glass system. To gain further understanding, we examined the morphology of the LLTO/oxide glass pellet cross section and tested the density of these pellets to confirm the amount of oxide glass necessary to fully fill space at the LLTO grain boundary.
机译:随着锂离子二次电池在实际应用中的越来越多的使用,固态电解质成为锂离子二次电池的关键部分,引起了人们的广泛关注。与液态电解质相比,固态电解质的优点是无电子泄漏,安全性,化学和热稳定性,高能量密度等。然而,无机固态电解质的一个缺点是离子电导率低,这主要归因于其低的晶界电导率。在锂电池应用的所有固态电解质候选材料中,钙钛矿结构钛酸镧锂(La2 / 3-x 1 / 3-2xLi3xTiO3)具有最佳的锂离子电导率,在锂离子电池中可达到10-3S / cm。晶粒体积,但通常在晶界处仅为10-6S / cm。;已发现,掺杂到LLTO晶界中的非晶相的添加可以显着提高其整体电导率。考虑了几种用作具有最佳性能的合适的,高导电性的非晶掺杂剂的候选物。硫化物玻璃体系被公认为是最高的锂离子传导性非晶体系。然而,与它的制造和在空气中的不稳定性以及与氧化物材料可能的反应有关的困难是其在LLTO系统中用作掺杂剂的主要缺点。这些不是氧化物玻璃系统中发现的问题,因此我们研究了几种氧化物玻璃形成器。以前,人们将三氧化硼,二氧化硅和氧化铝作为单组分非晶相掺杂剂引入LLTO,以提高其晶界电导率。为了进一步提高晶界离子电导率,研究了复合成分氧化物玻璃。事实证明,这些系统中的一些可以达到LLTO晶粒本体的离子电导率。;在本工作中,我们使用熔体淬火法制备了不同组成的0.4Li2O + 0.25B2O3 +(0.35-x)SiO 2+ xAl2O3玻璃系统并将其掺杂到LLTO晶界中以增强其离子电导率。 SiO 2通常用作基础玻璃形成剂。据信,Al取代Si可降低玻璃的活化能,此外,B 2 O 3和Al 2 O 3可作为碱玻璃的网络形成剂。我们的结果表明,在室温下,最佳电导率在晶界处可达到3.4x10-4S / cm。发现Al 2 O 3的量在该玻璃系统的电导率中起关键作用。为了获得进一步的了解,我们检查了LLTO /氧化物玻璃颗粒横截面的形态,并测试了这些颗粒的密度,以确认完全填充LLTO晶界空间所需的氧化物玻璃量。

著录项

  • 作者

    Zhou, Yue.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Mechanical engineering.
  • 学位 M.S.
  • 年度 2016
  • 页码 53 p.
  • 总页数 53
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号