首页> 外文学位 >Ionic conductivity studies of solid oxide fuel cell electrolytes and theoretical modeling of an entire solid oxide fuel cell.
【24h】

Ionic conductivity studies of solid oxide fuel cell electrolytes and theoretical modeling of an entire solid oxide fuel cell.

机译:固体氧化物燃料电池电解质的离子电导率研究以及整个固体氧化物燃料电池的理论模型。

获取原文
获取原文并翻译 | 示例

摘要

Because of the steep increase in oil prices, the global warming effect and the drive for energy independence, alternative energy research has been encouraged worldwide. The sustainable fuels such as hydrogen, biofuel, natural gas, and solar energy have attracted the attention of researchers. To convert these fuels into a useful energy source, an energy conversion device is required. Fuel cells are one of the energy conversion devices which convert chemical potentials into electricity. Due to their high efficiency, the ease to scale from 1 W range to megawatts range, no recharging requirement and the lack of CO2 and NOx emission (if H2 and air/O 2 are used), fuel cells have become a potential candidate for both stationary power generators and portable applications. This thesis has been focused primarily on solid oxide fuel cell (SOFC) studies due to its high efficiency, varieties of fuel choices, and no water management problem.; At the present, however, practical applications of SOFCs are limited by high operating temperatures that are needed to create the necessary oxide-ion vacancy mobility in the electrolyte and to create sufficient electrode reactivities. This thesis introduces several experimental and theoretical approaches to lower losses both in the electrolyte and the electrodes. Yttria stabilized zirconia (YSZ) is commonly used as a solid electrolyte for SOFCs due to its high oxygen-ion conductivity. To improve the ionic conductivity for low temperature applications, an approach that involves dilating the structure by irradiation and introducing edge dislocations into the electrolyte was studied. Secondly, to understand the activation loss in SOFC, the kinetic Monte Carlo (KMC) technique was implemented to model the SOFC operation to determining the rate-limiting step due to the electrodes on different sizes of Pt catalysts.; The isotope exchange depth profiling technique was employed to investigate the irradiation effect on the ionic transport in different orientations of single crystal YSZ and polycrystalline thin film YSZ deposited by pulsed laser deposition. The results indicate enhanced ionic conductivity and decreased activation energy of oxygen self-diffusion coefficients in the (100) Xe 3+ irradiated samples. However, a reduction in ionic conductivity was found in (100), (110), (111) Ar+ irradiated, and (111) Xe3+ irradiated single crystal YSZ, and Ar+ irradiated thin film YSZ.; To gain insight into the diffusion mechanism of vacancies in YSZ, quantum simulations using Density Functional Theory (DFT) complemented with the KMC technique were employed. Quantum simulations were used to calculate the migration energy barriers at different dopant arrangements surrounding a diffusing oxygen vacancy in the bulk and dislocation core regions. KMC was then used to simulate a random walk process in a randomly distributed landscape of vacancies and Y atoms in a YSZ supercell containing different types of dislocations. Subsequently, the diffusion coefficients and the activation energies of the simulated diffusion process were extracted as a function of dislocation densities and doping concentrations.; Furthermore, the similar simulation technique was modified to model impedance measurements in YSZ. The purpose of this study was to gain insight into the oxide ion diffusion process and the space charge double layer at the electrode-electrolyte interface subject to applied alternating potentials, as well as the dependence of impedance and double layer capacitance on the thickness of the electrolyte. KMC simulations were performed to simulate the movement of oxide ions using the migration barrier database obtained from previous DFT calculations with potential energy corrections under applied alternating potentials in different frequency domains.; Combining the electrolyte studies with experimental studies of the cathode and anode reaction rates, a complete solid oxide fuel cell can be modeled using KMC. To study the effect of
机译:由于石油价格的急剧上涨,全球变暖的影响以及对能源独立性的推动,全球范围内的替代能源研究得到了鼓励。氢,生物燃料,天然气和太阳能等可持续燃料引起了研究人员的关注。为了将这些燃料转换成有用的能源,需要能量转换装置。燃料电池是将化学势转换为电能的能量转换装置之一。由于它们的高效率,易于从1 W范围扩展到兆瓦范围,无充电要求以及缺少CO2和NOx排放(如果使用H2和air / O 2的情况),燃料电池已成为这两种燃料的潜在候选者固定式发电机和便携式应用。由于其效率高,燃料选择多样且无水管理问题,因此本论文主要侧重于固体氧化物燃料电池(SOFC)的研究。然而,目前,SOFC的实际应用受到在电解液中产生必要的氧化物离子空位迁移率并产生足够的电极反应性所需要的高工作温度的限制。本文介绍了几种降低电解质和电极损耗的实验和理论方法。氧化钇稳定的氧化锆(YSZ)由于其高的氧离子传导性而通常用作SOFC的固体电解质。为了提高低温应用中的离子电导率,研究了一种方法,该方法包括通过辐照扩张结构并将边缘位错引入电解质中。其次,为了了解SOFC中的活化损失,采用动力学蒙特卡洛(KMC)技术对SOFC操作进行建模,以确定由于电极在不同尺寸的Pt催化剂上引起的限速步骤。采用同位素交换深度分析技术,研究了脉冲激光沉积法沉积单晶YSZ和多晶薄膜YSZ在不同取向下对离子迁移的辐照效应。结果表明,在(100)Xe 3+辐照的样品中,离子电导率提高,氧自扩散系数的激活能降低。但是,在(100),(110),(111)Ar +照射,(111)Xe 3+照射单晶YSZ,Ar +照射薄膜YSZ中发现离子传导率降低。为了深入了解YSZ中空位的扩散机理,采用了使用密度泛函理论(DFT)和KMC技术的量子模拟。量子模拟被用来计算在主体和位错核心区域中扩散氧空位周围不同掺杂物排列的迁移能垒。然后,将KMC用于模拟包含不同类型位错的YSZ超级单元中空位和Y原子的随机分布情况中的随机游走过程。随后,根据位错密度和掺杂浓度提取模拟扩散过程的扩散系数和活化能。此外,对类似的仿真技术进行了修改,以对YSZ中的阻抗测量进行建模。这项研究的目的是深入了解氧化物离子的扩散过程和电极-电解质界面处的空间电荷双层受到施加的交流电的影响,以及阻抗和双层电容对电解质厚度的依赖性。 。使用从先前DFT计算获得的迁移势垒数据库进行KMC模拟,以模拟氧化物离子的运动,并在不同频域中施加交流电时对势能进行校正。将电解质研究与阴极和阳极反应速率的实验研究相结合,可以使用KMC对完整的固体氧化物燃料电池进行建模。研究效果

著录项

  • 作者

    Pornprasertsuk, Rojana.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Physics Condensed Matter.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 301 p.
  • 总页数 301
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:39:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号