...
首页> 外文期刊>Journal of Applied Physics >Perspective on training fully connected networks with resistive memories: Device requirements for multiple conductances of varying significance
【24h】

Perspective on training fully connected networks with resistive memories: Device requirements for multiple conductances of varying significance

机译:用电阻记忆训练完全连接的网络的观点:具有不同重要性的多电导的设备要求

获取原文
获取原文并翻译 | 示例

摘要

Novel Deep Neural Network (DNN) accelerators based on crossbar arrays of non-volatile memories (NVMs)-such as Phase-Change Memory or Resistive Memory-can implement multiply-accumulate operations in a highly parallelized fashion. In such systems, computation occurs in the analog domain at the location of weight data encoded into the conductances of the NVM devices. This allows DNN training of fully-connected layers to be performed faster and with less energy. Using a mixed-hardware-software experiment, we recently showed that by encoding each weight into four distinct physical devices-a "Most Significant Conductance" pair (MSP) and a "Least Significant Conductance" pair (LSP)-we can train DNNs to software-equivalent accuracy despite the imperfections of real analog memory devices. We surmised that, by dividing the task of updating and maintaining weight values between the two conductance pairs, this approach should significantly relax the otherwise quite stringent device requirements. In this paper, we quantify these relaxed requirements for analog memory devices exhibiting a saturating conductance response, assuming either an immediate or a delayed steep initial slope in conductance change. We discuss requirements on the LSP imposed by the "Open Loop Tuning" performed after each training example and on the MSP due to the "Closed Loop Tuning" performed periodically for weight transfer between the conductance pairs. Using simulations to evaluate the final generalization accuracy of a trained four-neuronlayer fully-connected network, we quantify the required dynamic range (as controlled by the size of the steep initial jump), the tolerable device-to-device variability in both maximum conductance and maximum conductance change, the tolerable pulse-to-pulse variability in conductance change, and the tolerable device yield, for both the LSP and MSP devices. We also investigate various Closed Loop Tuning strategies and describe the impact of the MSP/LSP approach on device endurance. Published by AIP Publishing.
机译:基于非易失性存储器(NVM)的交叉阵列(例如相变存储器或电阻性存储器)的新型深度神经网络(DNN)加速器可以高度并行化的方式实现乘法累加操作。在这样的系统中,计算在模拟域中的权重数据的位置编码为NVM设备的电导。这使DNN训练完全连接的层可以更快,更省力地进行。通过使用混合硬件软件实验,我们最近表明,通过将每个权重编码为四个不同的物理设备-“最重要电导”对(MSP)和“最不重要电导”对(LSP)-尽管实际的模拟存储设备不完善,但仍可以将DNN训练到软件等效的精度。我们推测,通过在两个电导对之间划分更新和保持权重值的任务,该方法将显着放宽原本非常严格的设备要求。在本文中,我们假设对电导率变化具有立即或延迟的陡峭初始斜率的模拟存储器件,对表现出饱和电导响应的这些宽松要求进行量化。我们讨论了在每个训练示例之后执行的“开环调整”所施加的LSP的要求,以及由于电导对之间的权重传递定期执行的“闭环调整”而对MSP的要求。使用仿真评估经过训练的四层神经元全连接网络的最终泛化精度,我们量化了所需的动态范围(由陡峭的初始跳跃的大小控制),在两个最大电导率下可容忍的设备间差异LSP和MSP器件的最大电导率变化,电导率变化的可容忍的脉冲间变化以及可容忍的器件良率。我们还将研究各种闭环调整策略,并描述MSP / LSP方法对设备耐用性的影响。由AIP Publishing发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号