...
首页> 外文期刊>Journal of Applied Physics >Simple analytical approximations for eddy current profiling of the near-surface residual stress in shot-peened metals
【24h】

Simple analytical approximations for eddy current profiling of the near-surface residual stress in shot-peened metals

机译:喷丸金属中近表面残余应力的涡流分布的简单分析近似

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Because of their frequency-dependent penetration depth, eddy current measurements are capable of mapping the near-surface depth profile of the electrical conductivity. This technique can be used to nondestructively characterize the subsurface residual stress distribution in certain types of shot-peened metals, e.g., in nickel-base superalloys. For quantitative evaluation of the experimental results, analytical and computational techniques are needed to solve the direct and inverse problems, i.e., to predict the frequency-dependent apparent eddy current conductivity from the depth profile of the frequency-independent intrinsic electrical conductivity of the specimen and vice versa. Simple analytical approximations are presented for both the direct and inverse eddy current problems by exploiting two specific features of the subsurface electrical conductivity variation caused by near-surface residual stresses in shot-peened metals. First, compressive residual stresses are limited to a shallow surface region of depth, much less than typical probe coil diameters. Second, the change in electrical conductivity due to residual stresses is always very small, typically less than 1%. The proposed approximations are verified by numerical comparison to much more complicated numerical solutions.
机译:由于其取决于频率的穿透深度,因此涡流测量能够绘制出电导率的近表面深度曲线。该技术可用于非破坏性地表征某些类型的喷丸处理金属(例如,镍基高温合金)中的表面残余应力分布。为了对实验结果进行定量评估,需要使用分析和计算技术来解决直接和反问题,即从样本的与频率无关的固有电导率的深度曲线中预测与频率有关的视涡流的电导率。反之亦然。通过利用喷丸金属中近表面残余应力引起的地下电导率变化的两个特定特征,对直流和逆涡电​​流问题都给出了简单的解析近似。首先,压缩残余应力仅限于深度较浅的表面区域,远小于典型的探头线圈直径。其次,由于残余应力引起的电导率变化始终很小,通常小于1%。通过与更复杂的数值解进行数值比较,验证了所提出的近似值。

著录项

  • 来源
    《Journal of Applied Physics》 |2004年第2期|p.1257-1266|共10页
  • 作者

    Feng Yu; Peter B. Nagy;

  • 作者单位

    Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, Ohio 45221-0070;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号