首页> 外文期刊>Journal of Applied Physics >Resistivity analysis of epitaxially grown, doped semiconductors using energy dependent secondary ion mass spectroscopy
【24h】

Resistivity analysis of epitaxially grown, doped semiconductors using energy dependent secondary ion mass spectroscopy

机译:外延生长的掺杂半导体的电阻率分析,使用依赖于能量的二次离子质谱

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A characterization technique is discussed that allows quantitative optimization of doping in epitaxially grown semiconductors. This technique uses relative changes in the host atom secondary ion (HASI) energy distribution from secondary ion mass spectroscopy (SIMS) to indicate relative changes in conductivity of the material. Since SIMS is a destructive process due to sputtering through a film, a depth profile of the energy distribution of sputtered HASIs in a matrix will contain information on the conductivity of the layers of the film as a function of depth. This process is demonstrated with Mg-doped GaN, with the Mg flux slowly increased through the film. Three distinct regions of conductivity were observed: one with Mg concentration high enough to cause compensation and thus high resistivity, a second with moderate Mg concentration and low resistivity, and a third with little to no Mg doping, causing high resistivity due to the lack of free carriers. During SIMS analysis of the first region, the energy distributions of sputtered Ga HASIs were fairly uniform and unchanging for a Mg flux above the saturation, or compensation, limit. For the second region, the Ga HASI energy distributions shifted and went through a region of inconsistent energy distributions for Mg flux slightly below the critical flux for saturation, or compensation. Finally, for the third region, the Ga HASI energy distributions then settled back into another fairly unchanging, uniform pattern. These three distinct regions were analyzed further through growth of Mg-doped step profiles and bulk growth of material at representative Mg fluxes. The materials grown at the two unchanging, uniform regions of the energy distributions yielded highly resistive material due to too high of Mg concentration and low to no Mg concentration, respectively. However, material grown in the transient energy distribution region with Mg concentration between that of the two highly resistive regions yielded low resistivity (0.59 Ω cm) and highly p-type (1.2 X 10~(18) cm~(-3) holes) Mg-doped GaN.
机译:讨论了一种表征技术,该技术允许对外延生长的半导体中的掺杂进行定量优化。该技术使用了来自次级离子质谱(SIMS)的主体原子次级离子(HASI)能量分布的相对变化来指示材料电导率的相对变化。由于SIMS是由于穿过膜的溅射而造成的破坏性过程,因此矩阵中溅射的HASI的能量分布的深度分布将包含关于膜层的电导率随深度变化的信息。掺Mg的GaN证明了这一过程,其中Mg通量在薄膜中缓慢增加。观察到三个不同的电导率区域:一个区域的Mg浓度足够高以引起补偿,从而具有较高的电阻率;第二个区域的Mg浓度适中且电阻率低;第三个区域的Mg掺杂量很少甚至没有掺杂,由于缺乏Mg而导致高电阻率免费运营商。在对第一区域进行SIMS分析期间,溅射的Ga HASI的能量分布相当均匀,并且对于超过饱和或补偿极限的Mg通量保持不变。对于第二个区域,Ga HASI的能量分布发生了移动,并穿过了Mg通量的能量分布不一致的区域,该区域略低于饱和或补偿的临界通量。最后,对于第三区域,Ga HASI的能量分布随后又回到了另一个相当不变的均匀模式。通过掺杂镁的阶跃曲线的生长和在代表性的镁通量下材料的整体生长,进一步分析了这三个不同的区域。在两个不变的能量分布区域中生长的材料分别由于Mg浓度过高和Mg浓度过低甚至没有而产生了高电阻材料。但是,在Mg浓度介于两个高电阻区域的Mg浓度之间的瞬态能量分布区域中生长的材料会产生低电阻率(0.59Ωcm)和高p型(1.2 X 10〜(18)cm〜(-3)孔)镁掺杂的GaN。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号