首页> 外文期刊>Journal of Applied Physics >Science and technology of thin films and interfacial layers in ferroelectric and high-dielectric constant heterostructures and application to devices
【24h】

Science and technology of thin films and interfacial layers in ferroelectric and high-dielectric constant heterostructures and application to devices

机译:铁电和高介电常数异质结构中薄膜和界面层的科学技术及其在器件中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

The fabrication of the next generation of complex oxide thin film-based micro and nanoscale devices, such as, for example, low and high density nonvolatile ferroelectric random access memories (FeRAMS), high-dielectric constant (K) high-frequency devices, and the next generation of complimentary metal oxide semiconductor (CMOS) nanoscale devices based on high-K dielectrics, require understanding and control of film growth and interface processes as well as development of materials integration strategies with atomic scale control. In recent years, we developed and applied a unique combination of integrated film synthesis / in situ characterization and ex situ analytical techniques capable of providing information about thin film surface and interface processes at the atomic scale as required for the development of the devices mentioned above. These techniques are also useful for establishing composition-microstructure-property relationships critical for the integration of oxide thin films with semiconductor device platforms for the development of a whole new generation of micro and nanodevices based on film technologies beyond semiconductors and specifically silicon. Our recent work has been focused on developing diffusion barrier layers and heterostructured bottom electrodes that play a critical role in high-density FeRAM integration. We demonstrated that TiAl layers can be used as a material with a double diffusion barrier/bottom electrode functionality for integration of ferroelectric capacitors CMOS devices for fabrication of FeRAMs. We also demonstrated that control of interfaces is critical to the integration of high-K dielectric films with appropriate substrates for the fabrication of high-performance high-frequency devices, and here again a diffusion barrier such as the TiAl layer developed by our group is critical for such integration. These studies revealed that when properly oxidized, nanoscale thick amorphous Ti-Al-O layers exhibit properties that make them strong candidates for application as gate dielectric in the next generation of nanoscale CMOS devices. We discuss here results from systematic studies designed to understand film growth and interface processes and their effect on materials integrations and composition-microstructure-property relationships and oxidation processes using sputter-deposition in conjunction with complementary in situ atomic layer-resolution mass spectroscopy of recoil ion (MSRI) and surface sensitive x-ray photoelectron spectroscopy (XPS) and ex situ transmission electron microscopy and electrical characterization. The unique combination of films synthesis and in situ/ex situ analytical techniques provides a powerful platform for the fundamental and applied materials science needed for the development of the next generation of multifunctional micro and nanoscale devices. A common theme in this article is the science and technology a TiAl layer that exhibit multifunctional characteristics as diffusion barrier and bottom electrode for integration of ferroelectric and high-dielectric constant (K) thing films with appropriate platform substrates for FeRAMs and high-frequency devices, and as a promising high-K dielectric layer for the next generation of nanoscale CMOS gates, flash memories, and other micro and nanodevices that require high-K layers in the device architecture.
机译:下一代基于复合氧化物薄膜的微米和纳米级器件的制造,例如低密度和高密度非易失性铁电随机存取存储器(FeRAMS),高介电常数(K)高频器件,以及下一代基于高K电介质的互补金属氧化物半导体(CMOS)纳米级器件,需要了解和控制膜的生长和界面工艺,以及开发具有原子级控制功能的材料集成策略。近年来,我们开发并应用了集成的薄膜合成/原位表征和非原位分析技术的独特组合,这些技术能够提供原子级的薄膜表面和界面过程信息,这是上述器件开发所需的信息。这些技术对于建立对于氧化物薄膜与半导体器件平台的集成至关重要的组成-微观结构-特性关系也非常有用,这些关系对于基于半导体以外的薄膜技术开发新一代的新一代微型和纳米器件,尤其是硅。我们最近的工作集中在开发在高密度FeRAM集成中起关键作用的扩散阻挡层和异质结构底部电极。我们证明了TiAl层可以用作具有双重扩散势垒/底部电极功能的材料,用于集成铁电电容器CMOS器件以制造FeRAM。我们还证明了界面的控制对于将高K介电膜与适当的基板集成在一起以制造高性能高频器件至关重要,而在这里我们小组开发的扩散阻挡层(例如TiAl层)同样至关重要这样的整合。这些研究表明,经过适当氧化后,纳米级厚的非晶Ti-Al-O层将具有使其成为下一代纳米CMOS器件栅极电介质的强大候选材料的特性。我们在这里讨论系统研究的结果,这些研究旨在了解膜的生长和界面过程及其对材料集成,组成-微结构-性能关系以及使用溅射沉积与反冲离子的互补原位原子层分辨率质谱联用的氧化过程的影响(MSRI)和表面敏感X射线光电子能谱(XPS)以及非原位透射电子显微镜和电学表征。薄膜合成与原位/异位分析技术的独特结合为开发下一代多功能微型和纳米级设备所需的基础和应用材料科学提供了强大的平台。本文的一个共同主题是科学技术上的TiAl层,该层具有多功能特性,如扩散阻挡层和底部电极,可将铁电和高介电常数(K)薄膜与适当的FeRAMs和高频器件的平台基板集成在一起,作为下一代纳米级CMOS栅极,闪存以及在设备架构中需要高K层的其他微型和纳米设备的有希望的高K介电层。

著录项

  • 来源
    《Journal of Applied Physics》 |2006年第5期|p.051614.1-051614.15|共15页
  • 作者

    Orlando Auciello;

  • 作者单位

    Argonne National Laboratory, Materials Science Division, Argonne, Illinois 60439;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用物理学;计量学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号