...
首页> 外文期刊>Journal of Applied Physics >Driving voltage reduction in white organic light-emitting devices from selectively doping in ambipolar blue-emitting layer
【24h】

Driving voltage reduction in white organic light-emitting devices from selectively doping in ambipolar blue-emitting layer

机译:通过选择性地掺杂双极性蓝色发光层来驱动白色有机发光器件的电压降低

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

White organic light-emitting devices (OLEDs) consisting of ambipolar 9,10-bis(2'-naphthyl) anthracene (ADN) as a host of blue-emitting layer (EML) were investigated. A thin codoped layer of yellow 5,6,11,12-Tetraphenylnaphthacene (rubrene) served as a probe for detecting the position of maximum recombination rate in the 4,4'-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl] biphenyl (DPAVBi) doped-ADN EML. Due to the energy barrier and bipolar carrier transport, the maximum recombination rate was found to be close to but not exactly at the interface of the hole-transporting layer and the EML. With appropriate tuning in the thickness, position, and dopant concentrations of the codoped layer (rubrene:DPAVBi:ADN) in the EML, the device driving voltage decreased by 21.7%, nearly 2 V in reduction, due to the increased recombination current from the faster exciton relaxation induced by the yellow dopants. Among the advantages of introducing the codoped layer over conventional single-doped layers are the elimination of the trapping effect to avoid increasing the device driving voltage, the alleviation of the dependence of the recombination zone on the applied voltage for improving color stability, and the utilization of excitons in a more efficient way to enhance device efficiency. Without using any electrically conductive layers such as the p-i-n structure, we were able to successfully generate 112 cd/m~2 at 4 V from our white OLED simply by engineering the structure of the EML.
机译:研究了由双极性9,10-双(2'-萘基)蒽(ADN)作为蓝色发光层(EML)的主体的白色有机发光器件(OLED)。黄色的5,6,11,12-四苯基萘并茂的共掺杂薄层用作探测4,4'-双[2-(4-(N,N-二苯氨基)的最大重组率的位置的探针)苯基)乙烯基]联苯(DPAVBi)掺杂的ADN EML。由于能垒和双极载流子传输,发现最大复合率接近但不完全在空穴传输层和EML的界面处。通过适当调整EML中共掺杂层(rubrene:DPAVBi:ADN)的厚度,位置和掺杂剂浓度,器件驱动电压降低了21.7%,降低了将近2 V,这是由于来自EML的复合电流增加了。黄色掺杂物引起的激子弛豫更快。与传统的单掺杂层相比,引入共掺杂层的优点包括消除了捕获效应以避免增加器件驱动电压,减轻了复合区对施加电压的依赖性,从而改善了色彩稳定性,以及利用激子以更有效的方式提高设备效率。在不使用任何导电层(例如p-i-n结构)的情况下,仅通过对EML进行结构设计,我们就能够从白色OLED成功地在4 V电压下产生112 cd / m〜2。

著录项

  • 来源
    《Journal of Applied Physics》 |2007年第9期|p.094508.1-094508.6|共6页
  • 作者单位

    Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用物理学;计量学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号