...
首页> 外文期刊>Journal of Applied Physics >Multimillion-atom nanoindentation simulation of crystalline silicon carbide: Orientation dependence and anisotropic pileup
【24h】

Multimillion-atom nanoindentation simulation of crystalline silicon carbide: Orientation dependence and anisotropic pileup

机译:结晶碳化硅的数百万原子纳米压痕模拟:方向依赖性和各向异性堆积

获取原文
获取原文并翻译 | 示例

摘要

We have performed multimillion-atom molecular dynamics simulations of nanoindentation on cubic silicon carbide (3C-SiC) surfaces corresponding to three different crystallographic directions, (110), (001), and (111), using pyramidal-shaped Vickers indenter with 90° edge angle. Load-displacement (P-h) curves show major and minor pop-in events during loading. Detailed analysis of the (110) indentation shows that the first minor discontinuity in the P-h curve is related to the nucleation of dislocations, whereas the subsequent major load drops are related to the dissipation of accumulated energy by expansion of dislocation loops and changes of slip planes. Motion of dislocation lines in the indented films involves a kink mechanism as well as mutually repelling glide-set Shockley partial dislocations with associated extension of stacking faults during the expansion of dislocation loops. Our simulations provide a quantitative insight into the stress distribution on slip planes and stress concentration at kinks and dislocation cores. The estimated Peierls stress is 7.5 GPa ≈ 3.9 ×10~(-2)G, where G is the shear modulus. We find that similar deformation mechanisms operate during nanoindentation of the three surfaces but the calculated hardness values are different, the highest being 27.5 GPa for the (111) plane. Anisotropic pileup patterns are observed after the indenter is unloaded and they all reside on (111) and (111) slip planes. These patterns are closely related to dislocation activities on the two slip planes. The anisotropy is a consequence of the asymmetry of the 3C-SiC crystal in which only (111) and (ffl) slip planes are active out of the {111} family.
机译:我们已经使用90°的金字塔形维氏压头在与三个不同晶体学方向(110),(001)和(111)对应的立方碳化硅(3C-SiC)表面上进行了数百万个原子的分子压痕动力学模拟。边缘角度。负载-位移(P-h)曲线显示了加载过程中的主要和次要弹出事件。对(110)压痕的详细分析表明,Ph曲线中的第一个较小的不连续性与位错的形核有关,而随后的主要载荷下降与位错环的扩展和滑移面的变化与累积能量的耗散有关。 。缩进膜中位错线的运动涉及扭结机制,以及相互排斥的滑移定型的肖克利局部位错,在位错环扩展过程中伴随着堆垛层错的扩展。我们的模拟为滑移面上的应力分布以及扭结和位错核心处的应力集中提供了定量的见解。估计的Peierls应力为7.5 GPa≈3.9×10〜(-2)G,其中G为剪切模量。我们发现相似的变形机制在三个表面的纳米压痕过程中起作用,但计算出的硬度值不同,(111)平面的最高硬度值为27.5 GPa。压头卸载后观察到各向异性堆积图案,它们都位于(111)和(111)滑移面上。这些模式与两个滑移面上的位错活动密切相关。各向异性是3C-SiC晶体不对称的结果,其中{111}族中只有(111)和(ffl)滑动面有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号