...
首页> 外文期刊>Journal of Applied Physics >Temporally evolved recoil pressure driven melt infiltration during laser surface modifications of porous alumina ceramic
【24h】

Temporally evolved recoil pressure driven melt infiltration during laser surface modifications of porous alumina ceramic

机译:多孔氧化铝陶瓷在激光表面改性过程中临时产生的反冲压力驱动熔体渗透

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Laser surface modification of porous alumina ceramic with a high power laser is associated with a series of physical processes such as heating, melting, and evaporation of material. Above certain threshold laser intensity (~10~(10) W/m~2), rapid evaporation at melt surface generates strong recoil pressures. These laser-induced evaporation recoil pressures tend to drive the flow of molten material into the porous substrate thus contributing to the overall observed depth of melting. This paper presents a three-dimensional thermal model to calculate the temporal evolution of temperature during laser surface modifications of alumina ceramic. This is followed by the determination of recoil pressures at the evaporating surface based on experimentally verified physical model of melt hydrodynamics and laser-induced evaporation proposed by Anisimov [Sov. Phys. JETP 27, 182 (1968)]. Finally, Carman-Kozeny equations were employed to analyze the effect of recoil pressure on the depth of infiltration which is subsequently integrated with the calculated depth of melting from thermal model. Such an integrative approach results in better agreement of the predicted values of depths of melting with the experimental values.
机译:用高功率激光对多孔氧化铝陶瓷进行激光表面改性与一系列物理过程相关,例如材料的加热,熔化和蒸发。超过一定的激光强度阈值(〜10〜(10)W / m〜2),熔体表面的快速蒸发会产生很强的反冲压力。这些由激光引起的蒸发反冲压力趋向于驱动熔融材料流入多孔基材,从而有助于观察到的总熔化深度。本文提出了一个三维热模型来计算氧化铝陶瓷的激光表面改性过程中温度的时间演变。接下来,根据Anisimov [Sov。Sov。Chem。Chem。,,1979年,物理JETP 27,182(1968)]。最后,采用Carman-Kozeny方程分析反冲压力对渗透深度的影响,随后将其与根据热模型计算出的融化深度进行积分。这种综合方法可以使熔融深度的预测值与实验值更好地吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号