首页> 外文期刊>Journal of Applied Physics >Very high-cycle fatigue failure in micron-scale polycrystalline silicon films: Effects of environment and surface oxide thickness
【24h】

Very high-cycle fatigue failure in micron-scale polycrystalline silicon films: Effects of environment and surface oxide thickness

机译:微米级多晶硅薄膜中的超高周疲劳失效:环境和表面氧化物厚度的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films (up to 10~(12) cycles), there is still an on-going debate on the precise mechanisms involved. We show here that for devices fabricated in the multiuser microelectromechanical system process (MUMPs) foundry and Sandia Ultra-planar, Multi-level MEMS Technology (SUMMiT V™) process and tested under equi-tension/compression loading at ~40 kHz in different environments, stress-lifetime data exhibit similar trends in fatigue behavior in ambient room air, shorter lifetimes in higher relative humidity environments, and no fatigue failure at all in high vacuum. The transmission electron microscopy of the surface oxides in the test samples shows a four- to sixfold thickening of the surface oxide at stress concentrations after fatigue failure, but no thickening after overload fracture in air or after fatigue cycling in vacua. We find that such oxide thickening and premature fatigue failure (in air) occur in devices with initial oxide thicknesses of ~4 nm (SUMMiT V™) as well as in devices with much thicker initial oxides ~20 nm (MUMPs). Such results are interpreted and explained by a reaction-layer fatigue mechanism. Specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure of the entire device. The entirety of the evidence presented here strongly indicates that the reaction-layer fatigue mechanism is the governing mechanism for fatigue failure in micron-scale polycrystalline silicon thin films.
机译:微米级多晶硅结构膜中的疲劳失效是在体硅中未观察到的现象,会严重影响微机电系统器件的耐用性和可靠性。尽管已经对这些薄膜的极高循环疲劳行为(高达10〜(12)个循环)进行了一些研究,但有关所涉及的精确机制仍存在持续的争论。我们在此表明​​,对于在多用户微机电系统工艺(MUMPs)铸造厂和Sandia超平面,多级MEMS技术(SUMMiT V™)工艺中制造的设备,并在〜40 kHz的等拉/压缩载荷下于不同环境下进行了测试应力寿命数据显示出在室内空气中疲劳行为的相似趋势,在较高相对湿度环境下的寿命较短,在高真空下完全没有疲劳失效。测试样品中表面氧化物的透射电子显微镜显示,疲劳破坏后,在应力集中,表面氧化物的厚度增加了4到6倍,但空气中的过载断裂或真空中的疲劳循环后,表面氧化物的厚度没有增加。我们发现这种氧化物增厚和过早疲劳失效(在空气中)发生在初始氧化物厚度约为4 nm的器件(SUMMiT V™)以及初始氧化物厚度约为20 nm(MUMPs)更高的器件中。通过反应层疲劳机理来解释和解释这种结果。具体地,在循环应力辅助的增厚的氧化物层内发生湿气辅助的亚临界裂纹,直到裂纹达到临界尺寸以引起整个装置的灾难性故障为止。本文提供的全部证据有力地表明,反应层疲劳机制是微米级多晶硅薄膜疲劳失效的主导机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号