...
首页> 外文期刊>Journal of Applied Physics >A comparative study of the dendritic avalanche in MgB_2 thin films synthesized by pulsed laser deposition and hybrid physical chemical vapor deposition methods
【24h】

A comparative study of the dendritic avalanche in MgB_2 thin films synthesized by pulsed laser deposition and hybrid physical chemical vapor deposition methods

机译:脉冲激光沉积与物理化学气相沉积混合法制备MgB_2薄膜中树突雪崩的比较研究。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

It is known that MgB_2 thin films synthesized by using hybrid physical chemical vapor deposition (HPCVD) do not show dendritic avalanche, which is in contrast to those prepared by using pulsed laser deposition (PLD). To find the cause that makes the difference between the two cases, we studied the microscopic film structure by the scanning electron microscopy and the magnetic hysteresis by using the superconducting quantum interference device magnetometry. The critical current density (J_c), estimated from the magnetic hysteresis based on the Bean's critical-state model, shows a much higher J_c in the PLD film than in a HPCVD film. This indicates higher vortex pinning in the PLD film. We surmise that high local joule heating beyond the high J_c in the PLD film, as a vortex penetrates into the superconducting thin film, gives a path for the next vortex and induces a positive feedback effect that is absent in the HPCVD film.
机译:已知通过使用混合物理化学气相沉积(HPCVD)合成的MgB_2薄膜没有显示出树突雪崩,这与使用脉冲激光沉积(PLD)制备的薄膜相反。为了找到造成这两种情况不同的原因,我们使用扫描电子显微镜研究了薄膜的膜结构,并使用了超导量子干涉仪的磁力分析技术研究了磁滞现象。根据Bean的临界状态模型根据磁滞估算的临界电流密度(J_c)显示,PLD膜中的J_c比HPCVD膜高得多。这表明PLD膜中的涡旋钉扎较高。我们推测,当涡旋渗透到超导薄膜中时,PLD膜中的局部焦耳加热会超过J_c的高水平,这会为下一个涡旋提供一条路径,并引起HPCVD膜中不存在的正反馈效应。

著录项

  • 来源
    《Journal of Applied Physics》 |2009年第8期|646-648|共3页
  • 作者单位

    Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea;

    Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea;

    Department of Physics, National Creative Research Initiative Center for Superconductivity, Sogang University, Seoul 121-742, Republic of Korea;

    State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China;

    State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China;

    State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China;

    State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China;

    Department of Physics and Department of Materials Science and Engineering and Materials Research, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;

    Department of Physics, BK21 Division, Sungkyunkwan University, Suwon 440-746, Republic of Korea;

    Quantum Material Research Team, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea;

    Quantum Material Research Team, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号