首页> 外文期刊>Journal of Applied Physics >Acoustic streaming induced elimination of nonspecifically bound proteins from a surface acoustic wave biosensor: Mechanism prediction using fluid-structure interaction models
【24h】

Acoustic streaming induced elimination of nonspecifically bound proteins from a surface acoustic wave biosensor: Mechanism prediction using fluid-structure interaction models

机译:声流诱导从表面声波生物传感器中消除非特异性结合的蛋白质:使用流体-结构相互作用模型的机理预测

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Biosensors typically operate in liquid media for detection of biomarkers and suffer from fouling resulting from nonspecific binding of protein molecules to the device surface. In the current work, using a coupled field finite element fluid-structure interaction simulation, we have identified that fluid motion induced by high intensity sound waves, such as those propagating in these sensors, can lead to the efficient removal of the nonspecifically bound proteins thereby eliminating sensor fouling. We present a computational analysis of the acoustic-streaming phenomenon induced biofouling elimination by surface acoustic-waves (SAWs) propagating on a lithium niobate piezoelectric crystal. The transient solutions generated from the developed coupled field fluid solid interaction model are utilized to predict trends in acoustic-streaming induced forces for varying design parameters such as voltage intensity, device frequency, fluid viscosity, and density. We utilize these model predictions to compute the various interaction forces involved and thereby identify the possible mechanisms for removal of nonspecifically-bound proteins. For the range of sensor operating conditions simulated, our study indicates that the SAW motion acts as a body force to overcome the adhesive forces of the fouling proteins to the device surface whereas the acoustic-streaming induced hydrodynamic forces prevent their reattachment. The streaming velocity fields computed using the finite element models in conjunction with the proposed particle removal mechanism were used to identify the optimum conditions that lead to improved removal efficiency. We show that it is possible to tune operational parameters such as device frequency and input voltage to achieve effective elimination of biofouling proteins in typical biosensing media. Our simulation results agree well with previously reported experimental observations. The findings of this work have significant implications in designing reusable, selective, and highly sensitive biosensors.
机译:生物传感器通常在液体介质中运行以检测生物标志物,并且由于蛋白质分子与装置表面的非特异性结合而遭受污染。在当前的工作中,我们使用耦合场有限元流体-结构相互作用模拟,我们已经确定了由高强度声波(例如在这些传感器中传播的声波)引起的流体运动可以导致有效去除非特异性结合的蛋白质,从而消除传感器结垢。我们提出了一种计算分析方法,该方法通过在铌酸锂压电晶体上传播的表面声波(SAW)消除了声流现象引起的生物结垢。从已开发的耦合场流体固体相互作用模型产生的瞬态解用于预测声流感应力的趋势,以改变设计参数,例如电压强度,设备频率,流体粘度和密度。我们利用这些模型预测来计算涉及的各种相互作用力,从而确定去除非特异性结合蛋白的可能机制。在模拟的传感器工作条件范围内,我们的研究表明,声表面波运动可作为一种体力来克服结垢蛋白对设备表面的粘附力,而声流引起的流体动力会阻止它们的重新附着。使用有限元模型结合提出的颗粒去除机制计算出的流场被用于确定导致去除效率提高的最佳条件。我们表明,有可能调节诸如设备频率和输入电压之类的操作参数,以有效消除典型生物传感介质中的生物污染蛋白。我们的模拟结果与先前报道的实验观察结果非常吻合。这项工作的发现对设计可重复使用,选择性和高度敏感的生物传感器具有重要意义。

著录项

  • 来源
    《Journal of Applied Physics》 |2010年第10期|p.104507.1-104507.11|共11页
  • 作者单位

    Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Avenue, Argonne,Illinois 60439, USA,Department of Chemical and Biomedical Engineering, Sensors Research Laboratory,University of South Florida, Tampa, Florida 33620, USA;

    Department of Chemical and Biomedical Engineering, Sensors Research Laboratory,University of South Florida, Tampa, Florida 33620, USA;

    Department of Chemical and Biomedical Engineering, Sensors Research Laboratory,University of South Florida, Tampa, Florida 33620, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号