首页> 外文期刊>Journal of Applied Physics >Time-resolved x-ray microdiffraction studies of phase transformations during rapidly propagating reactions in Al/Ni and Zr/Ni multilayer foils
【24h】

Time-resolved x-ray microdiffraction studies of phase transformations during rapidly propagating reactions in Al/Ni and Zr/Ni multilayer foils

机译:Al / Ni和Zr / Ni多层箔中快速传播反应过程中相变的时间分辨X射线微衍射研究

获取原文
获取原文并翻译 | 示例
           

摘要

We showed how intermetallic formation reactions can be studied under rapid heating (10~6-10~7 K s~(-1)) using x-ray microdiffraction with temporal resolution on microsecond time scales. Rapid heating was achieved by initiating an exothermic reaction in multilayer foils comprising alternating nanoscale layers of elemental metals. The reaction occurred in a front ~100 μm wide which propagated across the foil at ~1 - 10 m s~(-1). By using synchrotron x-rays focused to a small spot (60 μm diameter) and a fast pixel-array detector, we were able to track the evolution of phases in the reaction front during the initial heating transient, which occurred in approximately 1 ms, through cooling over a period of hundreds of milliseconds. In Al/Ni multilayer foils, the first phases to form were an Al-rich liquid and the cubic intermetallic AlNi (which likely formed by nucleation from the liquid). In foils of overall composition AlNi, this is the stable intermetallic and the only phase to form. In foils of composition Al_3Ni_2, during cooling we observed a peritectic reaction between AlNi and the remaining liquid to form Al_3Ni_2, which is the stable phase at room temperature and the final product of the reaction. This is in contrast to the sequence of phases under slow heating, where we observed formation of nonequilibrium Al_9N_2 first and do not observe formation of a liquid phase or the AlNi intermetallic. We also observed formation of an amorphous phase (along with crystalline ZrNi) during rapid heating of Zr/Ni multilayers, but in this system the temperature of the reaction front never reached the lowest liquidus temperature on the Zr-Ni phase diagram. This implies that the amorphous phase we observed was not a liquid arising from melting of a crystalline phase. We suggest instead that a Zr-rich amorphous solid formed due to solid-state interdiffusion, which then transformed to a supercooled liquid when the temperature exceeded the glass transition temperature. Formation of the supercooled liquid presumably facilitated continued rapid intermixing, which may be necessary to sustain a self-propagating reaction front in this system.
机译:我们展示了如何在X射线微衍射下以微秒级的时间分辨率在快速加热(10〜6-10〜7 K s〜(-1))下研究金属间形成反应。通过在包含交替的纳米级元素金属层的多层箔中引发放热反应来实现快速加热。反应发生在〜100μm宽的前沿,并在〜1-10 m s〜(-1)处穿过金属箔。通过使用聚焦在一个小点(直径60μm)上的同步加速器X射线和一个快速的像素阵列检测器,我们能够追踪在大约1毫秒内发生的初始加热瞬变期间反应前沿中各相的演变,通过数百毫秒的冷却时间。在Al / Ni多层箔中,要形成的第一相是富Al液体和立方金属间金属AlNi(很可能是通过液体中的成核作用形成的)。在整体成分为AlNi的箔中,这是稳定的金属间化合物,是唯一形成的相。在组成为Al_3Ni_2的箔中,在冷却过程中,我们观察到AlNi与剩余液体之间发生包晶反应,形成Al_3Ni_2,Al_3Ni_2是室温下的稳定相,是反应的最终产物。这与缓慢加热下的相序相反,在慢加热下,我们先观察到非平衡Al_9N_2的形成,而没有观察到液相或AlNi金属间化合物的形成。我们还观察到在快速加热Zr / Ni多层膜期间形成了非晶相(以及晶体ZrNi),但是在该系统中,反应前沿的温度从未达到Zr-Ni相图上的最低液相线温度。这意味着我们观察到的无定形相不是由结晶相熔化产生的液体。相反,我们建议由于固态相互扩散而形成富含Zr的非晶态固体,当温度超过玻璃化转变温度时,该固态固体会转变为过冷液体。过冷液体的形成大概促进了持续的快速混合,这对于维持该系统中自蔓延的反应前沿可能是必要的。

著录项

  • 来源
    《Journal of Applied Physics》 |2010年第11期|P.113511.1-113511.12|共12页
  • 作者单位

    Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218-2681, USA;

    Department of Physics, Cornell University, Ithaca, New York 14853, USA;

    rnDepartment of Physics, Cornell University, Ithaca, New York 14853, USA;

    rnDepartment of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218-2681, USA;

    rnDepartment of Physics, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, USA;

    rnDepartment of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218-2681, USA;

    rnDepartment of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218-2681, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号