...
首页> 外文期刊>Journal of Applied Physics >Hole transport and photoluminescence in Mg-doped InN
【24h】

Hole transport and photoluminescence in Mg-doped InN

机译:掺镁InN中的空穴传输和光致发光

获取原文
获取原文并翻译 | 示例

摘要

Hole conductivity and photoluminescence (PL) were studied in Mg-doped InN films grown by molecular beam epitaxy. Because surface electron accumulation interferes with carrier type determination by electrical measurements, the nature of the majority carriers in the bulk of the films was determined using thermopower measurements. Mg concentrations in a "window" from approximately 3 × 10~(17) to 1 × 10~(19) cm~(-3) produce hole-conducting, p-type films as evidenced by a positive Seebeck coefficient. This conclusion is supported by electrolyte-based capacitance voltage measurements and by changes in the overall mobility observed by Hall effect, both of which are consistent with a change from surface accumulation on an n-type film to surface inversion on a p-type film. The observed Seebeck coefficients are understood in terms of a parallel conduction model with contributions from surface and bulk regions. In partially compensated films with Mg concentrations below the window region, two peaks are observed in PL at 672 meV and at 603 meV. They are attributed to band-to-band and band-to-acceptor transitions, respectively, and an acceptor binding energy of ~70 meV is deduced. In hole-conducting films with Mg concentrations in the window region, no PL is observed; this is attributed to electron trapping by deep states which are empty for Fermi levels close to the valence band edge.
机译:在通过分子束外延生长的掺Mg的InN薄膜中研究了空穴电导率和光致发光(PL)。由于表面电子积累会干扰通过电测量确定载流子类型,因此使用热功率测量确定了薄膜主体中多数载流子的性质。 “窗口”中的Mg浓度从大约3×10〜(17)到1×10〜(19)cm〜(-3)会产生导孔的p型薄膜,这可以通过正塞贝克系数来证明。基于电解质的电容电压测量结果以及霍尔效应观察到的总体迁移率变化都支持了这一结论,这两者均与从n型膜上的表面累积到p型膜上的表面反转的变化一致。观察到的塞贝克系数是根据具有表面和主体区域贡献的平行传导模型来理解的。在低于窗口区域的Mg浓度的部分补偿膜中,在672 meV和603 meV的PL中观察到两个峰。它们分别归因于能带间和能带间的跃迁,推导了约70 meV的受体结合能。在窗口区域中具有Mg浓度的空穴传导膜中,未观察到PL;反之,则显示PL。这归因于深态的电子俘获,深态对于接近价带边缘的费米能级是空的。

著录项

  • 来源
    《Journal of Applied Physics 》 |2010年第11期| P.113712.1-113712.8| 共8页
  • 作者单位

    Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720, USA;

    rnMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    rnMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720, USA;

    rnMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720, USA;

    rnMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    rnMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720, USA;

    rnMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    rnDepartment of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850, USA;

    rnDepartment of Materials, University of California, Santa Barbara, California 93106, USA;

    rnDepartment of Materials, University of California, Santa Barbara, California 93106, USA;

    rnDepartment of Materials, University of California, Santa Barbara, California 93106, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号