...
首页> 外文期刊>Journal of Applied Physics >On the elastic, elastic-plastic properties of Au nanowires in the range of diameter 1-200 nm
【24h】

On the elastic, elastic-plastic properties of Au nanowires in the range of diameter 1-200 nm

机译:直径为1-200 nm的金纳米线的弹性,弹塑性特性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In the present study, we obtain Young's modulus and yield strength of (100) Au nanowire in the range of diameters 1-30 nm by tension and bending tests using molecular dynamics simulations. Double clamped Au nanowire is bended applying a point load at its middle span using cylindrical indenter by the atomistic approach. The superiority of the present bending technique is highlighted by analyzing the distribution of Von Misses stress of the present bending Au nanowire by 3D finite element modeling. First, Young's modulus and yield strength of Au nanowires are determined using classical theory of continuum mechanics. Then the obtained Young's modulus and yield strength of Au nanowires are corrected using 3D finite element modeling based on inverse technique [Deb Nath et al. Appl. Phys. A 103(2), 493 (2011) and Tohmyoh et al. Appl. Phys. A 103(2), 285 (2011)]. Effects of anisotropy on the tension and bending stiffness, tension and bending strength of Au nanowires are also discussed with graphs. Effects of temperature on the tension and bending stiffness, tension and bending strength of Au nanowires are discussed. Effects of vertical displacement of the indenter on the mid span of double clamped Au nanowires on the bending stiffness and strength during molecular dynamics simulation are discussed. Besides, the obtained Young's modulus and yield strength of Au nanowires by Wu et al. [Nature Mater. 4, 525 (2005)] in the range of diameters 40 to 200 nm using the theory of classical continuum mechanics are corrected using the 3D finite element modeling based on inverse technique [Deb Nath et al. Appl. Phys. A 103(2), 493 (2011) and Tohmyoh et al. Appl. Phys. A 103(2), 285 (2011)].
机译:在本研究中,我们使用分子动力学模拟通过拉伸和弯曲测试获得了直径范围为1-30 nm的(100)Au纳米线的杨氏模量和屈服强度。双夹持金纳米线是弯曲的,使用原子压头在其中间跨度上使用圆柱压头施加点载荷。通过3D有限元建模分析当前弯曲Au纳米线的Von Misses应力分布,凸显了当前弯曲技术的优越性。首先,使用连续力学的经典理论确定金纳米线的杨氏模量和屈服强度。然后,使用基于逆技术的3D有限元建模,对获得的Au纳米线的杨氏模量和屈服强度进行校正[Deb Nath等。应用物理A 103(2),493(2011)和Tohmyoh等。应用物理A 103(2),285(2011)。还用图形讨论了各向异性对金纳米线的拉伸和弯曲刚度,拉伸和弯曲强度的影响。讨论了温度对金纳米线的拉伸和弯曲刚度,拉伸和弯曲强度的影响。讨论了压头的垂直位移对双钳位金纳米线中间跨度对分子动力学模拟过程中弯曲刚度和强度的影响。此外,吴等人获得的金纳米线的杨氏模量和屈服强度。 [自然材料。 [4,525(2005)]使用经典连续介质力学理论,在直径40至200 nm的范围内,使用基于逆技术的3D有限元建模[Deb Nath et al。应用物理A 103(2),493(2011)和Tohmyoh等。应用物理A 103(2),285(2011)。

著录项

  • 来源
    《Journal of Applied Physics》 |2012年第12期|123522.1-123522.10|共10页
  • 作者

    S. K. Deb Nath; Sung-Gaun Kim;

  • 作者单位

    Division of Mechanical and Automotive Engineering, Kongju National University, Cheonan, South Korea;

    Division of Mechanical and Automotive Engineering, Kongju National University, Cheonan, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号