...
首页> 外文期刊>Journal of Applied Physics >A study on density functional theory of the effect of pressure on the formation and migration enthalpies of intrinsic point defects in growing single crystal Si
【24h】

A study on density functional theory of the effect of pressure on the formation and migration enthalpies of intrinsic point defects in growing single crystal Si

机译:压力对生长单晶硅中本征点缺陷的形成和迁移焓的影响的密度泛函理论研究

获取原文
获取原文并翻译 | 示例

摘要

In 1982, Voronkov presented a model describing point defect behavior during the growth of single crystal Si from a melt and derived an expression to predict if the crystal was vacancy- or self-interstitial-rich. Recently, Vanhellemont claimed that one should take into account the impact of compressive stress introduced by the thermal gradient at the melt/solid interface by considering the hydrostatic pressure dependence of the formation enthalpy of the intrinsic point defects. To evaluate the impact of thermal stress more correctly, the pressure dependence of both the formation enthalpy (H_f) and the migration enthalpy (H_m) of the intrinsic point defects should be taken into account. Furthermore, growing single crystal Si is not under hydrostatic pressure but almost free of external pressure (generally in Ar gas under reduced pressure). In the present paper, the dependence of H_f and H_m on the pressure P, or in other words, the pressure dependence of the formation energy (E_f) and the relaxation volume (v_f), is quantified by density functional theory calculations. Although a large number of ab initio calculations of the properties of intrinsic point defects have been published during the last years, calculations for Si crystals under pressure are rather scarce. For vacancies V, the reported pressure dependences of H_f~V are inconsistent. In the present study, by using 216-atom supercells with a sufficient cut-off energy and mesh of k-points, the neutral I and V are found to have nearly constant formation energies E_f~I and E_f~V for pressures up to 1 GPa. For the relaxation volume, v_f~I is almost constant while v/ decreases linearly with increasing pressure P. In case of the hydrostatic pressure P_h, the calculated formation enthalpy H_f~I and migration enthalpy H~m~I at the [110] dumbbell site are given by H_f~I = 3.425 - 0.057 × P_h (eV) and H_m~I = 0.981 - 0.039 ×P_h (eV), respectively, with P_h given in GPa. The calculated H_f~V and H_m~V dependencies on P_h given by H_f~V= 3.543 - 0.021 × P_h~2 - 0.019 × P_h (eV) and H_m~V = 0.249 + 0.018 × P_h~2 - 0.037 × P_h (eV), respectively. These results indicate that, when assuming that the pre-factors in the Arrhenius equation are not influenced, hydrostatic pressure up to 1 GPa leads to a slight increase of the thermal equilibrium concentration and diffusion of vacancies but this increase is much smaller than that of self-interstitials. The thermal stress in growing Si crystal is compressive, and thus the point defects are under internal pressure. Taking into account the differences in the enthalpies of point defects between hydrostatic pressure and internal pressure, Si crystal shifts to being V-rich with an increase in thermal stress during crystal growth.
机译:1982年,沃龙科夫(Voronkov)提出了一个模型,该模型描述了从熔体中生长单晶硅的过程中的点缺陷行为,并推导了一种表达式来预测晶体是富含空位还是自填隙。最近,Vanhellemont声称,应该通过考虑固有点缺陷的形成焓的静水压力依赖性来考虑在熔体/固相界面处由热梯度引入的压应力的影响。为了更正确地评估热应力的影响,应考虑固有点缺陷的形成焓(H_f)和迁移焓(H_m)的压力依赖性。此外,生长的单晶硅不是处于静水压力下,而是几乎没有外部压力(通常在减压的Ar气体中)。在本文中,H_f和H_m对压力P的依赖性,即地层能量(E_f)和弛豫体积(v_f)的压力依赖性,通过密度泛函理论计算得以量化。尽管在过去的几年中已经发表了大量关于本征点缺陷性质的从头算起的计算方法,但是在压力下对硅晶体的计算却很少。对于空位V,所报告的H_f〜V的压力依赖性不一致。在本研究中,通过使用具有足够截止能量和k点网格的216个原子的超级电池,发现中性I和V在压力高达1时具有几乎恒定的形成能E_f〜I和E_f〜V GPa。对于弛豫体积,v_f〜I几乎恒定,而v /随着压力P线性减小。在静水压力P_h的情况下,计算出的[110]哑铃的形成焓H_f〜I和迁移焓H〜m〜I该位点分别由H_f〜I = 3.425-0.057×P_h(eV)和H_m〜I = 0.981-0.039×P_h(eV)给出,P_h以GPa给出。由H_f〜V = 3.543-0.021×P_h〜2-0.019×P_h(eV)和H_m〜V = 0.249 + 0.018×P_h〜2-0.037×P_h(eV)得出的H_f〜V和H_m〜V对P_h的依赖性), 分别。这些结果表明,当假设不影响Arrhenius方程中的前置因子时,高达1 GPa的静水压力会导致热平衡浓度的微小增加和空位的扩散,但这种增加远小于自身的增加。 -插页式广告。生长的Si晶体中的热应力是压缩应力,因此点缺陷处于内部压力下。考虑到静水压和内压之间点缺陷焓的差异,随着晶体生长过程中热应力的增加,Si晶体转变为富含V的晶体。

著录项

  • 来源
    《Journal of Applied Physics 》 |2012年第9期| p.093529.1-093529.9| 共9页
  • 作者单位

    Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan;

    Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan;

    Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号