...
首页> 外文期刊>Journal of Applied Physics >Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains
【24h】

Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains

机译:使用镍基纳米颗粒和纳米链的磁流变弹性体的磁各向异性和弹性各向异性

获取原文
获取原文并翻译 | 示例

摘要

Nickel (Ni) based nanoparticles and nanochains were incorporated as fillers in polydimethylsiloxane (PDMS) elastomers and then these mixtures were thermally cured in the presence of a uniform magnetic field. In this way, macroscopically structured-anisotropic PDMS-Ni based magnetorheological composites were obtained with the formation of pseudo-chains-like structures (referred as needles) oriented in the direction of the applied magnetic field when curing. Nanoparticles were synthesized at room temperature, under air ambient atmosphere (open air, atmospheric pressure) and then calcined at 400 ℃ (in air atmosphere also). The size distribution was obtained by fitting Small Angle X-ray Scattering (SAXS) experiments with a polydisperse hard spheres model and a Schulz-Zimm distribution, obtaining a size distribution centered at (10.0 ±0.6) nm with polydispersivity given by σ = (8.0 ±0.2) nm. The SAXS, X-ray powder diffraction, and Transmission Electron Microscope (TEM) experiments are consistent with single crystal nanoparticles of spherical shape (average particle diameter obtained by TEM: (12 ± 1) nm). Nickel-based nanochains (average diameter: 360 nm; average length: 3 μm, obtained by Scanning Electron Microscopy; aspect ratio = length/diameter ~ 10) were obtained at 85 ℃ and ambient atmosphere (open air, atmospheric pressure). The magnetic properties of Ni-based nanoparticles and nanochains at room temperature are compared and discussed in terms of surface and size effects. Both Ni-based nanoparticles and nanochains were used as fillers for obtaining the PDMS structured magnetorheological composites, observing the presence of oriented needles. Magnetization curves, ferromagnetic resonance (FMR) spectra, and strain-stress curves of low filler's loading composites (2% wlw of fillers) were determined as functions of the relative orientation with respect to the needles. The results indicate that even at low loadings it is possible to obtain magnetorheological composites with anisotropic properties, with larger anisotropy when using nanochains. For instance, the magnetic remanence, the FMR field, and the elastic response to compression are higher when measured parallel to the needles (about 30% with nanochains as fillers). Analogously, the elastic response is also anisotropic, with larger anisotropy when using nanochains as fillers. Therefore, all experiments performed confirm the high potential of nickel nanochains to induce anisotropic effects in magnetorheological materials.
机译:将基于镍(Ni)的纳米颗粒和纳米链作为填料并入聚二甲基硅氧烷(PDMS)弹性体中,然后在均匀磁场存在下将这些混合物热固化。以此方式,获得了宏观结构各向异性PDMS-Ni基磁流变复合材料,其在固化时形成了沿所施加的磁场方向取向的伪链状结构(称为针)。纳米粒子在室温,大气环境下(露天,大气压)下合成,然后在400℃下煅烧(也在大气中)。通过使用多分散硬球模型和Schulz-Zimm分布拟合小角X射线散射(SAXS)实验获得尺寸分布,获得以(10.0±0.6)nm为中心的尺寸分布,且σ=(8.0) ±0.2)纳米SAXS,X射线粉末衍射和透射电子显微镜(TEM)实验与球形单晶纳米颗粒(通过TEM获得的平均粒径:(12±1)nm)一致。镍基纳米链(平均直径:360 nm;平均长度:3μm,通过扫描电子显微镜获得;长宽比=长度/直径〜10)是在85℃和环境大气(露天,大气压)下获得的。对镍基纳米颗粒和纳米链在室温下的磁性进行了比较,并根据表面和尺寸效应进行了讨论。镍基纳米颗粒和纳米链均被用作填充物,以获取PDMS结构的磁流变复合材料,同时观察到定向针的存在。确定低填充物负载复合材料(2%wlw填充物)的磁化曲线,铁磁共振(FMR)光谱和应变-应力曲线,作为相对于针的相对方向的函数。结果表明,即使在低负载下,也可以获得具有各向异性特性的磁流变复合材料,使用纳米链时具有较大的各向异性。例如,当平行于针头测量时,剩磁,FMR场和对压缩的弹性响应会更高(使用纳米链作为填充剂时约为30%)。类似地,当使用纳米链作为填料时,弹性响应也是各向异性的,具有较大的各向异性。因此,所有进行的实验都证实了镍纳米链在磁流变材料中诱发各向异性效应的巨大潜力。

著录项

  • 来源
    《Journal of Applied Physics 》 |2013年第21期| 213912.1-213912.11| 共11页
  • 作者单位

    Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Instituto de Quimica Fisica de Materiales, Ambiente y Energia (INQUIMAE), Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, C1428EGA Buenos Aires, Argentina;

    Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Instituto de Quimica Fisica de Materiales, Ambiente y Energia (INQUIMAE), Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, C1428EGA Buenos Aires, Argentina;

    Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Instituto de Quimica Fisica de Materiales, Ambiente y Energia (INQUIMAE), Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, C1428EGA Buenos Aires, Argentina;

    Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina;

    Centro Atomico Bariloche (Comision National de Energia Atomica. Argentina) and Instituto Balseiro, Universidad National de Cuyo, Mendoza, Argentina;

    Institute de Ciencias, Universidad National de General Sarmiento, Buenos Aires, Argentina;

    Grupo de Fluidos Complexos, Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil;

    Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Instituto de Quimica Fisica de Materiales, Ambiente y Energia (INQUIMAE), Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, C1428EGA Buenos Aires, Argentina;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号