首页> 外文期刊>Journal of Applied Physics >Enhanced dielectric properties from barium strontium titanate films with strontium titanate buffer layers
【24h】

Enhanced dielectric properties from barium strontium titanate films with strontium titanate buffer layers

机译:具有钛酸锶缓冲层的钛酸锶钡薄膜增强的介电性能

获取原文
获取原文并翻译 | 示例
       

摘要

In order to enhance the permittivity and tunability of the dielectric component, a thin film dielectric composite consisting of a radio frequency sputtered SrTiO_3 (STO) buffer layer and metalorganic solution deposited Mg-doped Ba_xSr_(1-x)TiO_3 (Mg-BST) thin film overgrowth was developed using affordable industry standard processes and materials. The effect of the STO buffer layer thickness on the dielectric response of the heterostructure was investigated. Our results demonstrate that the composite film heterostructure, evaluated in the metal-insulator-metal configuration Pt/STO/Mg-BST/Pt on sapphire substrate, with the thinner (9-17 nm) STO buffer layers possessed enhanced permittivity (ε_r~491) with respect to the thicker 41 nm buffer layer (ε_r~360) and that of a control Mg-BST film without a STO buffer layer (ε_r~380). Additionally, the composite film with the thinner buffer layers were shown to have low losses (tan δ~0.02), low leakage characteristics (7 = 7.0 ×l0~(-9) A/cm~2), high breakdown voltage (V_(BR)>10V), a large grain microstructure (~125nm), and smooth pin-hole free surfaces. The enhanced permittivity of the composite dielectric film resulted from three major factors: (i) the template-effect of the thin STO buffer layer on the thicker Mg-BST over-layer film to achieve a large grain microstructure, (ii) the low viscosity of the metallo-organic solution deposition (MOSD) solution, which ensured heterogeneous nucleation of the Mg-BST overgrowth film on the surface of the STO buffer layer, and (iii) minimization of the low permittivity grain boundary phase (TiO_(2-x) phase). The dielectric response of the BST can be explained using a thermodynamic model taking into account interlayer electrostatic and electromechanical interactions. Additionally, Mg doping of the BST enabled low loss and low leakage characteristics of the heterostructure. The large permittivity, low loss, low leakage characteristics, and defect free surfaces of the composite dielectric heterostructure promote tunable device miniaturization and hold the potential to enable enhanced electromagnetic coupling in ferromagnetic/high permittivity dielectric heterostructures, which in turn would facilitate the realization of integrated charge mediated voltage controlled magnetic radio frequency/microwave communication devices.
机译:为了提高介电元件的介电常数和可调谐性,一种薄膜介电复合材料由射频溅射SrTiO_3(STO)缓冲层和金属有机溶液沉积的掺Mg的Ba_xSr_(1-x)TiO_3(Mg-BST)薄膜组成胶片过度生长是使用​​可负担的行业标准工艺和材料开发的。研究了STO缓冲层厚度对异质结构介电响应的影响。我们的结果表明,在蓝宝石衬底上以金属-绝缘体-金属配置Pt / STO / Mg-BST / Pt评估的复合膜异质结构,较薄的(9-17 nm)STO缓冲层具有增强的介电常数(ε_r〜491 )相对于较厚的41 nm缓冲层(ε_r〜360)和不含STO缓冲层的对照Mg-BST膜的厚度(ε_r〜380)。另外,具有较薄缓冲层的复合膜具有低损耗(tanδ〜0.02),低泄漏特性(7 = 7.0×l0〜(-9)A / cm〜2),高击穿电压(V_( BR)> 10V),较大的晶粒组织(〜125nm),光滑的无针孔表面。复合介电膜的介电常数提高是由三个主要因素引起的:(i)薄的STO缓冲层在较厚的Mg-BST覆盖膜上的模板效应,以实现较大的晶粒微观结构;(ii)低粘度金属有机溶液沉积(MOSD)溶液,以确保STO缓冲层表面上Mg-BST过度生长膜的异质成核,以及(iii)最小化低介电常数晶界相(TiO_(2-x )阶段)。可以使用考虑了层间静电和机电相互作用的热力学模型来解释BST的介电响应。此外,BST的Mg掺杂可实现异质结构的低损耗和低泄漏特性。复合介电异质结构的大介电常数,低损耗,低泄漏特性和无缺陷的表面促进了可调谐器件的小型化,并具有在铁磁/高介电常数介电异质结构中增强电磁耦合的潜力,这反过来将有助于实现集成电荷介导的压控磁射频/微波通信设备。

著录项

  • 来源
    《Journal of Applied Physics》 |2013年第16期|164107.1-164107.10|共10页
  • 作者单位

    U. S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground,Maryland 21005, USA;

    U. S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground,Maryland 21005, USA;

    U. S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground,Maryland 21005, USA;

    U. S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground,Maryland 21005, USA;

    U. S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground,Maryland 21005, USA;

    U. S. Army Research Laboratory, Sensors & Electron Devices Directorate, Adelphi, Maryland 20783, USA;

    Department of Materials Science and Engineering and Institute of Material Science,University of Connecticut, Storrs, Connecticut 06269, USA;

    Department of Materials Science and Engineering and Institute of Material Science,University of Connecticut, Storrs, Connecticut 06269, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:10:13

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号