...
首页> 外文期刊>Journal of Applied Physics >Dielectric breakdown and failure of anodic aluminum oxide films for electrowetting systems
【24h】

Dielectric breakdown and failure of anodic aluminum oxide films for electrowetting systems

机译:电润湿系统阳极氧化铝膜的介电击穿和失效

获取原文
获取原文并翻译 | 示例

摘要

We study electrical properties and breakdown phenomena in metal/aluminum oxide/metal and electrolyte/aluminum oxide/metal contacts, with the aim to achieve a better understanding of failure modes and improve the performance of model electrowetting systems. Electrical conduction in anodic aluminum oxide dielectrics is dominated by the presence of electrically active trapping sites, resulting in various conduction mechanisms being dominant within distinct voltage ranges until hard breakdown occurs. Breakdown voltage depends on its polarity, due to the formation of a p-i-n junction within the oxide; such asymmetric behavior tends to disappear at larger oxide thickness. Electrolyte/dielectric contacts present an even more pronounced asymmetry in breakdown characteristics: a cathodic bias results in breakdown at low voltage, while under anodic bias high field ionic conduction starts before breakdown occurs. These phenomena are interpreted in terms of electrochemical reactions occurring at the surface: cathodic processes contribute to oxide dissolution and failure, while anodic processes result in additional oxide growth before breakdown.
机译:我们研究金属/氧化铝/金属和电解质/氧化铝/金属触点中的电性能和击穿现象,目的是更好地了解失效模式并改善模型电润湿系统的性能。阳极氧化铝电介质中的导电主要受电活性俘获位点的影响,导致各种导电机制在不同的电压范围内占主导地位,直到发生硬击穿为止。击穿电压取决于其极性,这是由于在氧化物内形成了一个p-i-n结。这种不对称行为倾向于在较大的氧化物厚度下消失。电解质/电介质触点在击穿特性上表现出更加明显的不对称性:阴极偏压导致低压下的击穿,而在阳极偏压下,高电场离子传导在击穿发生之前就开始了。这些现象是根据表面发生的电化学反应来解释的:阴极过程有助于氧化物的溶解和破坏,而阳极过程会导致分解前氧化物的额外生长。

著录项

  • 来源
    《Journal of Applied Physics》 |2013年第1期|014901.1-014901.8|共8页
  • 作者单位

    Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA;

    Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA;

    Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA;

    Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville,Virginia 22904, USA;

    Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA;

    Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号