首页> 外文期刊>Journal of Applied Physics >Quantitative magnetic imaging at the nanometer scale by ballistic electron magnetic microscopy
【24h】

Quantitative magnetic imaging at the nanometer scale by ballistic electron magnetic microscopy

机译:弹道电子磁显微镜在纳米级定量磁成像

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We demonstrate quantitative ballistic electron magnetic microscopy (BEMM) imaging of simple model Fe(OOl) nanostructures. We use in situ nanostencil shadow mask resistless patterning combined with molecular beam epitaxy deposition to prepare under ultra-high vacuum conditions nanostructured epitaxial Fe/Au/Fe/GaAs(001) spin-valves. In this epitaxial system, the magnetization of the bottom Fe/GaAs(001) electrode is parallel to the [110] direction, defining accurately the analysis direction for the BEMM experiments. The large hot-electron magnetoresistance of the Fe/Au/Fe/GaAs(001) epitaxial spin-valve allows us to image various stable magnetic configurations on the as-grown Fe(001) microstructures with a high sensitivity, even for small misalignments of both magnetic electrodes. The angular dependence of the hot-electron magnetocurrent is used to convert magnetization maps calculated by micromagnetic simulations into simulated BEMM images. The calculated BEMM images and magnetization rotation profiles show quantitative agreement with experiments and allow us to investigate the magnetic phase diagram of these model Fe(001) microstructures. Finally, magnetic domain reversals are observed under high current density pulses. This opens the way for further BEMM investigations of current-induced magnetization dynamics.
机译:我们展示了简单的模型Fe(001)纳米结构的定量弹道电子显微镜(BEMM)成像。我们使用原位纳米模板荫罩无阻图形与分子束外延沉积相结合,以在超高真空条件下制备纳米结构的外延Fe / Au / Fe / GaAs(001)自旋阀。在此外延系统中,底部Fe / GaAs(001)电极的磁化方向平行于[110]方向,从而准确定义了BEMM实验的分析方向。 Fe / Au / Fe / GaAs(001)外延自旋阀的大热电子磁致电阻使我们能够以很高的灵敏度在已生长的Fe(001)微结构上成像各种稳定的磁性构型,即使对于很小的未对准也是如此。两个磁性电极。使用热电子磁流的角度依赖性将通过微磁模拟计算出的磁化图转换为模拟的BEMM图像。计算出的BEMM图像和磁化旋转曲线表明与实验定量吻合,使我们能够研究这些模型Fe(001)微观结构的磁相图。最后,在高电流密度脉冲下观察到磁畴反转。这为进一步的BEMM研究电流感应的磁化动力学开辟了道路。

著录项

  • 来源
    《Journal of Applied Physics》 |2013年第23期|233909.1-233909.6|共6页
  • 作者单位

    Departement Materiaux et Nanosciences, Institut de Physique de Rennes, UMR 6251,CNRS-Universite de Rennes 1, Campus de Beaulieu, Bat 11E, 35042 Rennes cedex, France;

    Departement Materiaux et Nanosciences, Institut de Physique de Rennes, UMR 6251,CNRS-Universite de Rennes 1, Campus de Beaulieu, Bat 11E, 35042 Rennes cedex, France;

    Departement Materiaux et Nanosciences, Institut de Physique de Rennes, UMR 6251,CNRS-Universite de Rennes 1, Campus de Beaulieu, Bat 11E, 35042 Rennes cedex, France;

    Departement Materiaux et Nanosciences, Institut de Physique de Rennes, UMR 6251,CNRS-Universite de Rennes 1, Campus de Beaulieu, Bat 11E, 35042 Rennes cedex, France;

    Departement Materiaux et Nanosciences, Institut de Physique de Rennes, UMR 6251,CNRS-Universite de Rennes 1, Campus de Beaulieu, Bat 11E, 35042 Rennes cedex, France;

    Departement Materiaux et Nanosciences, Institut de Physique de Rennes, UMR 6251,CNRS-Universite de Rennes 1, Campus de Beaulieu, Bat 11E, 35042 Rennes cedex, France;

    Departement Materiaux et Nanosciences, Institut de Physique de Rennes, UMR 6251,CNRS-Universite de Rennes 1, Campus de Beaulieu, Bat 11E, 35042 Rennes cedex, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号