...
首页> 外文期刊>Journal of Applied Physics >Verification of band offsets and electron effective masses in GaAsN/GaAs quantum wells: Spectroscopic experiment versus 10-band k·p modeling
【24h】

Verification of band offsets and electron effective masses in GaAsN/GaAs quantum wells: Spectroscopic experiment versus 10-band k·p modeling

机译:GaAsN / GaAs量子阱中带隙和电子有效质量的验证:光谱实验与10波段k·p建模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Optical transitions in GaAs_(1-x)N_x/GaAs quantum wells (QWs) have been probed by two complementary techniques, modulation spectroscopy in a form of photoreflectance and surface photovoltage spectroscopy. Transition energies in QWs of various widths and N contents have been compared with the results of band structure calculations based on the 10-band k·p Hamiltonian. Due to the observation of higher order transitions in the measured spectra, the band gap discontinuities at the GaAsN/GaAs interface and the electron effective masses could be determined, both treated as semi-free parameters to get the best matching between the theoretical and experimental energies. We have obtained the chemical conduction band offset values of 86% for x = 1.2% and 83% for x = 2.2%, respectively. For these determined band offsets, the electron effective masses equal to about 0.09 m_o in QWs with 1.2% N and 0.15 m_o for the case of larger N content of 2.2%.
机译:GaAs_(1-x)N_x / GaAs量子阱(QWs)中的光学跃迁已通过两种互补技术进行了探索,一种是光反射形式的调制光谱,另一种是表面光电压光谱。将不同宽度和N含量的QW中的跃迁能与基于10带k·p哈密顿量的带结构计算结果进行了比较。由于观察到了所测光谱中的高阶跃迁,因此可以确定GaAsN / GaAs界面处的带隙不连续性和电子有效质量,将其视为半自由参数,以获得理论和实验能量之间的最佳匹配。 。对于x = 1.2%和x = 2.2%,我们分别获得了86%的化学导带偏移值。对于这些确定的带偏移,对于N含量为2.2%的情况,在具有1.2%N和0.15 m_o的QW中,电子有效质量等于约0.09 m_o。

著录项

  • 来源
    《Journal of Applied Physics》 |2013年第23期|233508.1-233508.7|共7页
  • 作者单位

    Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw,Poland;

    Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw,Poland;

    Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw,Poland;

    Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw,Poland;

    Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw,Poland;

    Technische Physik, Physikalisches Institut and Wilhelm-Conrad-Roentgen-Research Center for Complex Material Systems, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany;

    Technische Physik, Physikalisches Institut and Wilhelm-Conrad-Roentgen-Research Center for Complex Material Systems, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany;

    Technische Physik, Physikalisches Institut and Wilhelm-Conrad-Roentgen-Research Center for Complex Material Systems, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany;

    Technische Physik, Physikalisches Institut and Wilhelm-Conrad-Roentgen-Research Center for Complex Material Systems, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号