...
首页> 外文期刊>Journal of Applied Physics >Thermal equation of state and thermodynamic properties of molybdenum at high pressures
【24h】

Thermal equation of state and thermodynamic properties of molybdenum at high pressures

机译:高压下态的热力学方程和热力学性质

获取原文
获取原文并翻译 | 示例

摘要

A comprehensive P-V-T dataset for bcc-Mo was obtained at pressures up to 31 GPa and temperatures from 300 to 1673 K using MgO and Au pressure calibrants. The thermodynamic analysis of these data was performed using high-temperature Birch-Murnaghan (HTBM) equations of state (EOS), Mie-Gruneisen-Debye (MGD) relation combined with the room-temperature Vinet EOS, and newly proposed Kunc-Einstein (KE) approach. The analysis of room-temperature compression data with the Vinet EOS yields V_0 = 31.14±0.02 A~3, K_T=260±1 GPa, and K_T~1 = 4.21±0.05. The derived thermoelastic parameters for the HTBM include (σK_T/σT)_P = -0.019±0.001 GPa/K and thermal expansion α = a_0 + a_1T with a_0= 1.55 (±0.05) x 10~(-5) K~(-1) and a_1 =0.68 (±0.07) × 10~(-8)K~(-2). Fitting to the MGD relation yields γ_0 = 2.03±0.02 and q = 0.24±0.02 with the Debye temperature (θ_0) fixed at 455-470 K. Two models are proposed for the KE EOS. The model 1 (Mo-1) is the best fit to our P-V-T data, whereas the second model (Mo-2) is derived by including the shock compression and other experimental measurements. Nevertheless, both models provide similar thermoelastic parameters. Parameters used on Mo-1 include two Einstein temperatures (O)_(E10) = 366K and Θ_(E20) = 208 K; Grueneisen parameter at ambient condition γ_0 = 1.64 and infinite compression γ_∞ = 0.358 with β=0.323; and additional fitting parameters m = 0.195, e_0 = 0.9×10~(-6) K~(-1), and g = 5.6. Fixed parameters include k = 2 in Kunc EOS, m_(E1) =m_(E2)= 1.5 in expression for Einstein temperature, and a_0 = 0 (an intrinsic anharmonicity parameter). These parameters are the best representation of the experimental data for Mo and can be used for variety of thermodynamic calculations for Mo and Mo-containing systems including phase diagrams, chemical reactions, and electronic structure.
机译:使用MgO和Au压力校准剂,在高达31 GPa的压力和300至1673 K的温度下,获得了bcc-Mo的全面P-V-T数据集。这些数据的热力学分析是使用高温Birch-Murnaghan(HTOS)状态方程(EOS),Mie-Gruneisen-Debye(MGD)关系与室温Vinet EOS以及最新提出的Kunc-Einstein( KE)方法。用Vinet EOS分析室温压缩数据得出V_0 = 31.14±0.02 A〜3,K_T = 260±1 GPa和K_T〜1 = 4.21±0.05。导出的HTBM的热弹性参数包括(σK_T/σT)_P = -0.019±0.001 GPa / K和热膨胀α= a_0 + a_1T,a_0 = 1.55(±0.05)x 10〜(-5)K〜(-1) )和a_1 = 0.68(±0.07)×10〜(-8)K〜(-2)。拟合MGD关系可得到γ_0= 2.03±0.02和q = 0.24±0.02,而德拜温度(θ_0)固定在455-470K。为KE EOS提出了两个模型。模型1(Mo-1)最适合我们的P-V-T数据,而第二个模型(Mo-2)是通过包含冲击压缩和其他实验测量得出的。尽管如此,两个模型都提供了相似的热弹性参数。 Mo-1上使用的参数包括两个爱因斯坦温度(O)_(E10)= 366K和Θ_(E20)= 208 K;在环境条件γ_0= 1.64和无限压缩γ_∞= 0.358且条件β= 0.323时的Grueneisen参数;以及其他拟合参数m = 0.195,e_0 = 0.9×10〜(-6)K〜(-1),g = 5.6。固定参数包括Kunc EOS中的k = 2,爱因斯坦温度表达式中的m_(E1)= m_(E2)= 1.5和a_0 = 0(固有非谐性参数)。这些参数是Mo实验数据的最佳表示,可用于Mo和含Mo的系统的各种热力学计算,包括相图,化学反应和电子结构。

著录项

  • 来源
    《Journal of Applied Physics 》 |2013年第9期| 093507.1-093507.10| 共10页
  • 作者单位

    Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk 630090, Russia V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090, Russia;

    Institute of the Earth's Crust, SB RAS, Irkutsk 664033, Russia;

    Department of Earth and Planetary Materials Science, Graduate School of Science, Tohoku University,Sendai 980-8578, Japan;

    Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA;

    Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk 630090, Russia V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090, Russia Department of Earth and Planetary Materials Science, Graduate School of Science, Tohoku University,Sendai 980-8578, Japan;

    Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk 630090, Russia V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090, Russia;

    Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk 630090, Russia V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090, Russia;

    Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk 630090, Russia V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090, Russia;

    Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk 630090, Russia V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090, Russia;

    Spring-8, Japan Synchrotron Radiation Research Institute, Kouto, Hyogo 678-5198, Japan;

    Spring-8, Japan Synchrotron Radiation Research Institute, Kouto, Hyogo 678-5198, Japan;

    Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk 630090, Russia V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090, Russia;

    V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090, Russia Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号