...
首页> 外文期刊>Journal of Applied Physics >Structural and magnetic properties of In_(1-x)Mn_xSb: Effect of Mn complexes and MnSb nanoprecipitates
【24h】

Structural and magnetic properties of In_(1-x)Mn_xSb: Effect of Mn complexes and MnSb nanoprecipitates

机译:In_(1-x)Mn_xSb的结构和磁性能:Mn配合物和MnSb纳米沉淀的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Structural and magnetic properties of the group Ⅲ-Ⅴdiluted magnetic semiconductor In_(1-x)Mn_xSb with x = 0.005-0.06, including the nuclear magnetic resonance (NMR) investigations, are reported. Polycrystalline In_(1-x)Mn_xSb samples were prepared by direct alloying of indium antimonide, manganese and antimony, followed by a fast cooling of the melt with a rate of 10-12 K/s. According to the X-ray diffraction data, part of Mn is substituted for In, forming the In_(1-x)Mn_xSb matrix. Atomic force microscopy and scanning tunneling microscopy investigations provide evidence for the presence of microcrystalline MnSb inclusions (precipitates), having a size of ~100-600 nm, and the fine structure of nanosize grains with a Gaussian distribution around the diameter of ~24 nm. According to the NMR spectra, the majority of Mn enters the MnSb inclusions. In addition to the single Mn ions, which contribute to the magnetization M (T) only in the low-temperature limit of T< 10-20K, and MnSb nanoprecipitates responsible for the ferromagnetic (FM) properties of In_(1-x)Mn_xSb, a superparamagnetic (SP) contribution of atomic-size magnetic Mn complexes (presumably dimers) has been established. The fraction of the MnSb phase, η~1-4%, as well as the concentration, n_(sp)~(0.8-3.2) × 10~(19)cm~(-3), and the magnetic moment of the Mn dimers, μ~8-9μ_B, are determined. The solubility limit of Mn in the InSb matrix, N_(SL)~10~(20)cm~(-3), is estimated. Hysteresis in low (H < 500 Oe) magnetic fields and saturation of the magnetization in high (H > 20 kOe) magnetic fields are observed, indicating a presence of the SP and FM contributions to the dependence of M (H) up to T ~500 K. The hysteresis is characterized by the coercivity field, H_c, decreasing between ~100 and 75 Oe when T is increased from 5 to 510K. The values of H_c are in reasonable agreement with the effect of the largest MnSb inclusions. The maximum of M (T), measured in the zero-field-cooled and the field-cooled conditions in a weak field of 500 Oe, is observed at T~510K and is attributable to the Hopkinson effect.
机译:报道了Ⅲ-Ⅴ族稀磁半导体In_(1-x)Mn_xSb(x = 0.005-0.06)的结构和磁性,包括核磁共振(NMR)研究。通过将锑化铟,锰和锑直接合金化,然后以10-12 K / s的速度快速冷却熔体,制备了多晶In_(1-x)Mn_xSb样品。根据X射线衍射数据,用一部分Mn代替In,形成In_(1-x)Mn_xSb基体。原子力显微镜和扫描隧道显微镜研究提供了证据,表明存在尺寸为〜100-600 nm的微晶MnSb夹杂物(析出物),并且在〜24 nm直径附近具有高斯分布的纳米晶粒的精细结构。根据NMR光谱,大部分Mn进入MnSb夹杂物中。除了仅在T <10-20K的低温极限下有助于磁化M(T)的单个Mn离子外,MnSb纳米沉淀物负责In_(1-x)Mn_xSb的铁磁(FM)特性,已经建立了原子大小的磁性Mn络合物(可能是二聚体)的超顺磁性(SP)贡献。 MnSb相的分数η〜1-4%以及浓度n_(sp)〜(0.8-3.2)×10〜(19)cm〜(-3)和Mn的磁矩确定了二聚体μ〜8-9μ_B。估算了Mn在InSb基体中的溶解度极限,N_(SL)〜10〜(20)cm〜(-3)。在低(H <500 Oe)磁场中有磁滞现象,在高(H> 20 kOe)磁场中有磁化饱和现象,这表明SP和FM对M(H)直至T〜的依赖性都有贡献。 500K。磁滞的特征是矫顽力场H_c,当T从5增加到510K时,在约100至75 Oe之间减小。 H_c的值与最大MnSb夹杂物的影响在合理范围内一致。在T〜510K下,在500 Oe的弱场中,在零场冷却和场冷却条件下测得的M(T)最大值在T〜510K处观察到。

著录项

  • 来源
    《Journal of Applied Physics》 |2013年第8期|083905.1-083905.7|共7页
  • 作者单位

    Department of Mathematics and Physics, Lappeenranta University of Technology, PO Box 20,FIN-53851 Lappeenranta, Finland,South-West State University, 50 let Oktjabrja Str., 305040 Kursk, Russia;

    Department of Mathematics and Physics, Lappeenranta University of Technology, PO Box 20,FIN-53851 Lappeenranta, Finland,Russian Research Centre "Kurchatov Institute ", 1 Kurchatov Square, 123182 Moscow, Russia,Institute of Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Izhorskaya Str. 13,125412 Moscow, Russia;

    Department of Mathematics and Physics, Lappeenranta University of Technology, PO Box 20,FIN-53851 Lappeenranta, Finland,Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, MD-2028 Kishinev, Moldova;

    Department of Mathematics and Physics, Lappeenranta University of Technology, PO Box 20,FIN-53851 Lappeenranta, Finland;

    Institute of Solid State Physics, Vienna University of Technology, A -1040 Vienna, Austria;

    Dipartimento di Fisica e Unifa CN1SM, Universifa degli Studi di Parma, Vialle delle Scienze, 7A,43100 Parma, Italy;

    Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy pr. 31,119991 Moscow, Russia;

    South-West State University, 50 let Oktjabrja Str., 305040 Kursk, Russia;

    South-West State University, 50 let Oktjabrja Str., 305040 Kursk, Russia;

    Department of Mathematics and Physics, Lappeenranta University of Technology, PO Box 20,FIN-53851 Lappeenranta, Finland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号