首页> 外文期刊>Journal of Applied Physics >InGaAs/GaAsP superlattice solar cells with reduced carbon impurity grown by low-temperature metal-organic vapor phase epitaxy using triethylgallium
【24h】

InGaAs/GaAsP superlattice solar cells with reduced carbon impurity grown by low-temperature metal-organic vapor phase epitaxy using triethylgallium

机译:通过使用三乙基镓的低温金属有机气相外延生长的碳杂质减少的InGaAs / GaAsP超晶格太阳能电池

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we investigated the effects of carbon incorporation on photovoltaic performance of InGaAs/GaAsP superlattice (SL) solar cells grown by low-temperature MOVPE (LT-MOVPE), which is required for stable SL growth on vicinal substrates. Using trimethylgallium (TMGa) as the gallium precursor, methyl radicals formed by its pyrolysis tend to be absorbed on the surface at low temperature, causing severe carbon incorporation and p-type background doping. High background carrier concentration flattens the band-lineup of the intrinsic region and blocks the carrier transport across the SLs, and resulted in serious degradation of photocurrent. Intentional sulfur doping to cancel out the background doping and hence to recover the built-in field greatly improved the cell performance, but was found to require very precise control of doping level to achieve an exact compensation doping condition. Use of triethylgallium (TEGa) instead of TMGa much reduced the carbon incorporation at low temperature and significantly enhanced the photocurrent extraction without sulfur doping treatment. By thinning GaAsP barriers to 3 nm to facilitate efficient tunneling transport, a 50-period SL cell with bandgap of 1.22 eV grown on 6°-miscut substrates achieved 1.13 times higher efficiency with 31% current enhancement as middle cell performance than a GaAs reference cell.
机译:在本文中,我们研究了碳掺入对低温MOVPE(LT-MOVPE)生长的InGaAs / GaAsP超晶格(SL)太阳能电池光伏性能的影响,而低温MOVPE(LT-MOVPE)是在相邻衬底上稳定SL生长所必需的。使用三甲基镓(TMGa)作为镓前驱物,由其热解形成的甲基自由基倾向于在低温下吸收在表面上,从而导致严重的碳掺入和p型背景掺杂。高背景载流子浓度会使本征区的能带变平,并阻止载流子跨SL传输,并导致光电流严重退化。有意进行硫掺杂以抵消本底掺杂,从而恢复了内置电场,大大提高了电池性能,但发现需要非常精确地控制掺杂水平才能实现精确的补偿掺杂条件。用三乙基镓(TEGa)代替TMGa可以大大减少低温下的碳掺入,并且显着增强了未经硫掺杂处理的光电流提取。通过将GaAsP势垒减薄至3 nm以促进有效的隧道传输,在6°误切割的衬底上生长的带隙为1.22 eV的50周期SL电池实现了1.13倍的效率提高,中间电流性能比GaAs参考电池高31% 。

著录项

  • 来源
    《Journal of Applied Physics》 |2014年第20期|203101.1-203101.8|共8页
  • 作者单位

    Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, Japan;

    Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, Japan;

    Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan;

    Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan;

    Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, Japan;

    Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号