首页> 外文期刊>Journal of Applied Physics >The effects of optical phonon on the binding energy of bound polaron in a wurtzite ZnO/Mg_xZn_(1-x)O quantum well
【24h】

The effects of optical phonon on the binding energy of bound polaron in a wurtzite ZnO/Mg_xZn_(1-x)O quantum well

机译:光学声子对纤锌矿型ZnO / Mg_xZn_(1-x)O量子阱中结合极化子的结合能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

An improved Lee-Low-Pines intermediate coupling method is used to study the energies and binding energies of bound polarons in a wurtzite ZnO/Mg_xZn_(1-x)O quantum well. The contributions from different branches of long-wave optical phonons, i.e., confined optical phonons, interface optical phonons, and half-space optical phonons are considered. In addition to electron-phonon interaction, the impurity-phonon interaction, and the anisotropy of material parameters, such as phonon frequency, electron effective mass, and dielectric constant, are also included in our computation. Ground-state energies, binding energies and detailed phonon contributions from various phonons as functions of well width, impurity position and composition are presented. Our result suggests that total phonon contribution to ground state and binding energies in the studied wurtzite ZnO/Mg_(0.3)Zn_(0.7)O quantum wells varies between 28-23 meV and 62-45 meV, respectively, which are much larger than the corresponding values (about 3.2-1.8 meV and 1.6-0.3 meV) in GaAs/Al_(0.3)Ga_(0.7)As quantum wells. For a narrower quantum well, the phonon contribution mainly comes from interface and half-space phonons, for a wider quantum well, most of phonon contribution originates from confined phonons. The contribution from all the phonon modes to binding energies increases slowly either when impurity moves far away from the well center in the z direction or with the increase in magnesium composition (x). It is found that different phonons have different influences on the binding energies of bound polarons. Furthermore, the phonon contributions to binding energies as functions of well width, impurity position, and composition are very different from one another. In general, the electron-optical phonon interaction and the impurity center-optical phonon interaction play an important role in electronic states of ZnO-based quantum wells and cannot be neglected.
机译:采用改进的Lee-Low-Pines中间耦合方法研究纤锌矿型ZnO / Mg_xZn_(1-x)O量子阱中束缚极化子的能量和束缚能。考虑了长波光子的不同分支的贡献,即受限光子,界面光子和半空间光子。除了电子-声子相互作用外,杂质-声子相互作用以及材料参数的各向异性(例如声子频率,电子有效质量和介电常数)也包括在我们的计算中。给出了基态能,结合能和各种声子的详细声子贡献,这些声子随阱宽度,杂质位置和组成的变化而变化。我们的结果表明,在研究的纤锌矿型ZnO / Mg_(0.3)Zn_(0.7)O量子阱中,总声子对基态和结合能的贡献分别在28-23 meV和62-45 meV之间变化,比GaAs / Al_(0.3)Ga_(0.7)As量子阱中的相应值(大约3.2-1.8 meV和1.6-0.3 meV)。对于较窄的量子阱,声子的贡献主要来自于界面和半空间声子,对于较宽的量子阱,大多数声子的贡献来自于受限的声子。当杂质沿z方向远离阱中心时或随着镁成分(x)的增加,所有声子模式对键能的贡献缓慢增加。发现不同的声子对结合极化子的结合能有不同的影响。此外,声子对结合能的贡献是阱宽度,杂质位置和组成的函数,彼此之间非常不同。通常,电子-光子声子相互作用和杂质中心-光子声子相互作用在基于ZnO的量子阱的电子态中起着重要的作用,不能忽视。

著录项

  • 来源
    《Journal of Applied Physics》 |2014年第1期|013512.1-013512.6|共6页
  • 作者单位

    College of Physics and Electronic Information, Inner Mongolia Normal University, Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Hohhot 010022, People's Republic of China;

    Department of Applied Physics, College of Science, South China Agricultural University, Guangzhou 510642, People's Republic of China;

    School of Physical Science and Technology, Inner Mongolia University, Hohhot 010022, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号