...
首页> 外文期刊>Journal of Applied Physics >Framework to predict optimal buffer layer pairing for thin film solar cell absorbers: A case study for tin sulfide/zinc oxysulfide
【24h】

Framework to predict optimal buffer layer pairing for thin film solar cell absorbers: A case study for tin sulfide/zinc oxysulfide

机译:预测薄膜太阳能电池吸收器最佳缓冲层配对的框架:硫化锡/氧硫化锌的案例研究

获取原文
获取原文并翻译 | 示例
           

摘要

An outstanding challenge in the development of novel functional materials for optoelectronic devices is identifying suitable charge-carrier contact layers. Herein, we simulate the photovoltaic device performance of various n-type contact material pairings with tin(Ⅱ) sulfide (SnS), a p-type absorber. The performance of the contacting material, and resulting device efficiency, depend most strongly on two variables: conduction band offset between absorber and contact layer, and doping concentration within the contact layer. By generating a 2D contour plot of device efficiency as a function of these two variables, we create a performance-space plot for contacting layers on a given absorber material. For a simulated high-lifetime SnS absorber, this 2D performance-space illustrates two maxima, one local and one global. The local maximum occurs over a wide range of contact-layer doping concentrations (below 10~(16)cm~(-3)), but only a narrow range of conduction band offsets (0 to -0.1 eV), and is highly sensitive to interface recombination. This first maximum is ideal for early-stage absorber research because it is more robust to low bulk-minority-carrier lifetime and pinholes (shunts), enabling device efficiencies approaching half the Shockley-Queisser limit, greater than 16%. The global maximum is achieved with contact-layer doping concentrations greater than 10~(18)cm~(-3), but for a wider range of band offsets (-0.1 to 0.2 eV), and is insensitive to interface recombination. This second maximum is ideal for high-quality films because it is more robust to interface recombination, enabling device efficiencies approaching the Shockley-Queisser limit, greater than 20%. Band offset measurements using X-ray photoelectron spectroscopy and carrier concentration approximated from resistivity measurements are used to characterize the zinc oxysulfide contacting layers in recent record-efficiency SnS devices. Simulations representative of these present-day devices suggest that record efficiency SnS devices are optimized for the second local maximum, due to low absorber lifetime and relatively well passivated interfaces. By employing contact layers with higher carrier concentrations and lower electron affinities, a higher efficiency ceiling can be enabled.
机译:在开发用于光电器件的新型功能材料中的一个巨大挑战是确定合适的电荷载流子接触层。在本文中,我们模拟了与n型硫化锡(SnS)(一种p型吸收剂)配对的各种n型接触材料的光伏器件性能。接触材料的性能以及由此产生的器件效率在很大程度上取决于两个变量:吸收层和接触层之间的导带偏移以及接触层内的掺杂浓度。通过生成设备效率的二维等高线图作为这两个变量的函数,我们创建了性能空间图,用于在给定的吸收材料上接触层。对于模拟的高寿命SnS吸收器,此2D性能空间显示了两个最大值,一个局部,一个全局。局部最大值出现在很宽的接触层掺杂浓度范围内(低于10〜(16)cm〜(-3)),但导带偏移范围很小(0至-0.1 eV),并且高度敏感接口重组。该第一最大值对于早期吸收器研究是理想的,因为它对于低体积少数载流子的寿命和针孔(分流)具有更高的鲁棒性,使器件效率接近肖克利-奎塞尔极限的一半,大于16%。接触层掺杂浓度大于10〜(18)cm〜(-3)时可达到全局最大值,但能带偏移范围更广(-0.1至0.2 eV),并且对界面重组不敏感。第二个最大值对于高质量薄膜是理想的,因为它对界面重组更稳定,使器件效率接近Shockley-Queisser极限(大于20%)。使用X射线光电子能谱进行能带偏移测量以及从电阻率测量得出的载流子浓度用于表征近来记录效率SnS器件中的氧硫化锌接触层。代表这些当今设备的仿真表明,由于吸收器寿命短和钝化界面相对较好,记录效率SnS设备已针对第二个局部最大值进行了优化。通过采用具有较高载流子浓度和较低电子亲和力的接触层,可以实现较高的效率上限。

著录项

  • 来源
    《Journal of Applied Physics》 |2015年第11期|115102.1-115102.9|共9页
  • 作者单位

    Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Harvard University, Cambridge, Massachusetts 02138, USA;

    Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Harvard University, Cambridge, Massachusetts 02138, USA;

    Harvard University, Cambridge, Massachusetts 02138, USA;

    Harvard University, Cambridge, Massachusetts 02138, USA;

    Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号