...
首页> 外文期刊>Journal of Applied Physics >Tuning of in-plane optical anisotropy by inserting ultra-thin InAs layer at interfaces in (001)-grown GaAs/AlGaAs quantum wells
【24h】

Tuning of in-plane optical anisotropy by inserting ultra-thin InAs layer at interfaces in (001)-grown GaAs/AlGaAs quantum wells

机译:通过在(001)生长的GaAs / AlGaAs量子阱中的界面处插入超薄InAs层来调整面内光学各向异性

获取原文
获取原文并翻译 | 示例
           

摘要

The in-plane optical anisotropy (IPOA) in (001)-grown GaAs/AlGaAs quantum wells (QWs) with different well widths varying from 2 nm to 8 nm has been studied by reflectance difference spec-troscopy. Ultra-thin InAs layers with thickness ranging from 0.5 monolayer (ML) to 1.5 ML have been inserted at GaAs/AlGaAs interfaces to tune the asymmetry in the QWs. It is demonstrated that the IPOA can be accurately tailored by the thickness of the inserted ultra-thin InAs layer at the interfaces. Strain-induced IPOA has also been extracted by using a stress apparatus. We find that the intensity of the strain-induced IPOA decreases with the thickness of the inserted InAs layer, while that of the interface-induced IPOA increases with the thickness of the InAs layer. Theoretical calculations based on 6 band k • p theory have been carried out, and good agreements with experimental results are obtained. Our results demonstrate that, the IPOA of the QWs can be greatly and effectively tuned by inserting an ultra-thin InAs layer with different thicknesses at the interfaces of QWs, which does not significantly influence the transition energies and the transition probability of QWs.
机译:通过反射率差光谱法研究了(001)生长的GaAs / AlGaAs量子阱(QW)的面内光学各向异性(IPOA),该阱的宽度从2 nm到8 nm不等。在GaAs / AlGaAs界面处插入了厚度范围从0.5单层(ML)到1.5 ML的超薄InAs层,以调整QW中的不对称性。结果表明,可以通过在界面处插入的超薄InAs层的厚度来精确地调整IPOA。应变诱导的IPOA也已通过使用压力设备提取。我们发现,应变诱导的IPOA的强度随插入的InAs层的厚度而降低,而界面诱导的IPOA的强度随InAs层的厚度而增加。进行了基于6频段k•p理论的理论计算,并与实验结果取得了良好的吻合。我们的结果表明,通过在QW的界面处插入厚度不同的超薄InAs层,可以大大有效地调谐QW的IPOA,这不会显着影响QW的跃迁能和跃迁几率。

著录项

  • 来源
    《Journal of Applied Physics》 |2015年第1期|015302.1-015302.7|共7页
  • 作者单位

    Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou, China,Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, People's Republic of China,Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China;

    Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou, China;

    Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou, China;

    Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou, China;

    Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, People's Republic of China;

    Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号