...
首页> 外文期刊>Journal of Applied Physics >Band offsets and trap-related electron transitions at interfaces of (100)InAs with atomic-layer deposited Al_2O_3
【24h】

Band offsets and trap-related electron transitions at interfaces of (100)InAs with atomic-layer deposited Al_2O_3

机译:(100)InAs与原子层沉积的Al_2O_3的界面处的能带偏移和与陷阱有关的电子跃迁

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Spectral analysis of optically excited currents in single-crystal (100)InAs/amorphous (a-)Al_2O_3/ metal structures allows one to separate contributions stemming from the internal photoemission (IPE) of electrons into alumina and from the trapping-related displacement currents. IPE spectra suggest that the out-diffusion of In and, possibly, its incorporation in a-Al_2O_3 lead to the development of ≈0.4 eV wide conduction band (CB) tail states. The top of the InAs valence band is found at 3.45 ± O.lOeV below the alumina CB bottom, i.e., at the same energy as at the GaAs/a-Al_2O_3 interface. This corresponds to the CB and the valence band offsets at the InAs/a-Al_2O_3 interface of 3.1 ± 0.1 eV and 2.5 ±0.1 eV, respectively. However, atomic-layer deposition of alumina on InAs results in additional low-energy electron transitions with spectral thresholds in the range of 2.0-2.2 eV, which is close to the bandgap of AlAs. The latter suggests the interaction of As with Al, leading to an interlayer containing Al-As bonds providing a lower barrier for electron injection.
机译:对单晶(100)InAs /非晶(a-)Al_2O_3 /金属结构中的光激发电流进行光谱分析,可以将电子的内部光发射(IPE)产生的贡献与氧化铝和与俘获相关的位移电流分开。 IPE光谱表明,In的向外扩散以及可能在a-Al_2O_3中的掺入导致形成了约0.4 eV宽导带(CB)尾态。发现InAs价带的顶部位于氧化铝CB底部以下3.45±0.001eV,即与GaAs / a-Al_2O_3界面处的能量相同。这分别对应于InAs / a-Al_2O_3接口的CB和价带偏移,分别为3.1±0.1 eV和2.5±0.1 eV。但是,氧化铝在InAs上的原子层沉积会导致额外的低能电子跃迁,其光谱阈值在2.0-2.2 eV的范围内,接近AlAs的带隙。后者表明了As与Al的相互作用,从而导致了包含Al-As键的中间层,从而为电子注入提供了更低的势垒。

著录项

  • 来源
    《Journal of Applied Physics》 |2016年第23期|235701.1-235701.7|共7页
  • 作者单位

    Laboratory of Semiconductor Physics, Department of Physics, University of Leuven, Leuven, Belgium;

    Tyndall National Institute and Department of Chemistry, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland;

    Tyndall National Institute and Department of Chemistry, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland;

    Tyndall National Institute and Department of Chemistry, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland;

    Tyndall National Institute and Department of Chemistry, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland;

    School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA;

    School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA;

    Laboratory of Semiconductor Physics, Department of Physics, University of Leuven, Leuven, Belgium;

    Laboratory of Semiconductor Physics, Department of Physics, University of Leuven, Leuven, Belgium;

    Laboratory of Semiconductor Physics, Department of Physics, University of Leuven, Leuven, Belgium;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号