首页> 外文期刊>Journal of Applied Physics >Electronic bandstructure and optical gain of lattice matched Ⅲ-Ⅴ dilute nitride bismide quantum wells for 1.55μm optical communication systems
【24h】

Electronic bandstructure and optical gain of lattice matched Ⅲ-Ⅴ dilute nitride bismide quantum wells for 1.55μm optical communication systems

机译:1.55μm光通信系统中晶格匹配的Ⅲ-Ⅴ稀氮化铋量子阱的电子能带结构和光学增益

获取原文
获取原文并翻译 | 示例
           

摘要

Dilute nitride bismide GaNBiAs is a potential semiconductor alloy for near- and mid-infrared applications, particularly in 1.55 μm optical communication systems. Incorporating dilute amounts of bismuth (Bi) into GaAs reduces the effective bandgap rapidly, while significantly increasing the spin-orbit-splitting energy. Additional incorporation of dilute amounts of nitrogen (N) helps to attain lattice matching with GaAs, while providing a route for flexible bandgap tuning. Here we present a study of the electronic bandstructure and optical gain of the lattice matched GaN_xBi_yAs_(1-x-y)/GaAs quaternary alloy quantum well (QW) based on the 16-band k·p model. We have taken into consideration the interactions between the N and Bi impurity states with the host material based on the band anticrossing and valence band anticrossing model. The optical gain calculation is based on the density matrix theory. We have considered different lattice matched GaNBiAs QW cases and studied their energy dispersion curves, optical gain spectrum, maximum optical gain, and differential gain and compared their performances based on these factors. The thickness and composition of these QWs were varied in order to keep the emission peak fixed at 1.55 μm. The well thickness has an effect on the spectral width of the gain curves. On the other hand, a variation in the injection carrier density has different effects on the maximum gain and differential gain of QWs of varying thicknesses. Among the cases studied, we found that the 6.3nm thick GaN_3Bi_(5.17)As_(91.83) lattice matched QW was most suited for 1.55 μm (0.8 eV) GaAs-based photonic applications.
机译:稀氮化铋(GaN)GaNBiAs是一种潜在的半导体合金,适用于近红外和中红外应用,尤其是在1.55μm光通信系统中。将稀释量的铋(Bi)掺入GaAs可以迅速降低有效带隙,同时显着增加自旋轨道分裂能。额外掺入少量的氮(N)有助于实现与GaAs的晶格匹配,同时为灵活的带隙调谐提供了一条途径。在这里,我们基于16波段k·p模型,研究了晶格匹配的GaN_xBi_yAs_(1-x-y)/ GaAs四元合金量子阱(QW)的电子能带结构和光学增益。我们基于能带反交叉和价能带反交叉模型,考虑了N和Bi杂质态与主体材料之间的相互作用。光增益的计算基于密度矩阵理论。我们考虑了不同晶格匹配的GaNBiAs QW案例,研究了它们的能量色散曲线,光学增益谱,最大光学增益和差分增益,并根据这些因素比较了它们的性能。为了保持发射峰固定在1.55μm,改变了这些QW的厚度和组成。阱的厚度会影响增益曲线的光谱宽度。另一方面,注入载流子密度的变化对厚度变化的QW的最大增益和差分增益具有不同的影响。在研究的案例中,我们发现厚度为6.3nm的GaN_3Bi_(5.17)As_(91.83)晶格匹配QW最适合基于1.55μm(0.8 eV)GaAs的光子应用。

著录项

  • 来源
    《Journal of Applied Physics》 |2016年第9期|093111.1-093111.8|共8页
  • 作者单位

    School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore and OPTIMUS, Centre for OptoEIectronics and Biophotonics, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;

    School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore and OPTIMUS, Centre for OptoEIectronics and Biophotonics, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;

    School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore and OPTIMUS, Centre for OptoEIectronics and Biophotonics, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号